conophylline and Non-alcoholic-Fatty-Liver-Disease

conophylline has been researched along with Non-alcoholic-Fatty-Liver-Disease* in 3 studies

Reviews

1 review(s) available for conophylline and Non-alcoholic-Fatty-Liver-Disease

ArticleYear
Therapeutic activity of plant-derived alkaloid conophylline on metabolic syndrome and neurodegenerative disease models.
    Human cell, 2018, Volume: 31, Issue:2

    Increasing metabolic syndromes including type-2 diabetes mellitus, obesity, and steatohepatitis are serious problems in most countries in the world. Neurodegenerative diseases such as Alzheimer, Parkinson's, and Huntington's diseases are increasing in many countries. However, therapy for these diseases is not sufficient yet. Thus, effective chemotherapy for these diseases is being expected. Conophylline is an alkaloid isolated from the leaves of Ervatamia microphylla and related plants. It was found to induce beta-cell differentiation in the precursor pancreatic cells. Oral administration of this compound ameliorated type-2 diabetes mellitus model in mice and rats. Later, fibrosis of the pancreatic islets was found to be greatly reduced by conophylline in the pancreatic islets. It also inhibited chemically induced liver cirrhosis. Further study indicated that conophylline inhibited non-alcoholic steatohepatitis in the model mice. On the one hand, loss of autophagy often causes protein aggregation to give neural cell death. Conophylline was found to activate autophagy in cultured neural cells. Activation of autophagy ameliorated cellular models of Parkinson's and Huntington's diseases. Thus, conophylline is likely to be useful for the development of chemotherapy for metabolic and neurodegenerative diseases.

    Topics: Animals; Autophagy; Cell Differentiation; Diabetes Mellitus, Type 2; Disease Models, Animal; Fibrosis; Humans; Islets of Langerhans; Metabolic Syndrome; Mice; Molecular Targeted Therapy; Neurodegenerative Diseases; Non-alcoholic Fatty Liver Disease; Phytotherapy; Plant Leaves; Tabernaemontana; Vinca Alkaloids

2018

Other Studies

2 other study(ies) available for conophylline and Non-alcoholic-Fatty-Liver-Disease

ArticleYear
Conophylline inhibits high fat diet-induced non-alcoholic fatty liver disease in mice.
    PloS one, 2019, Volume: 14, Issue:1

    Conophylline (CnP), a vinca alkaloid extracted from the leaves of the tropical plant Tabernaemontana divaricate, attenuates hepatic fibrosis in mice. We have previously shown that CnP inhibits non-alcoholic steatohepatitis (NASH) using a methionine-choline-deficient (MCD) diet-fed mouse model. However, little is known about the CnP mediated inhibition of hepatic steatosis in high-fat diet-induced non-alcoholic fatty liver disease (NAFLD) mouse models. CnP (0.5 and 1 μg/g/body weight) was co-administered along with a high-fat diet to male BALB/c mice. After nine weeks of administering the high-fat diet, hepatic steatosis, triglyceride, and hepatic fat metabolism-related markers were examined. Administration of a high-fat diet for 9 weeks was found to induce hepatic steatosis. CnP dose-dependently attenuated the high-fat diet-induced hepatic steatosis. The diet also attenuated hepatic peroxisome proliferator-activated receptor alpha (PPARA) mRNA levels. PPARA is known to be involved in β-oxidation. CnP upregulated the mRNA levels of hepatic PPARA and its target genes, such as carnitine palmitoyl transferase 1 (CPT1) and CPT2, in a dose-dependent manner in the liver. Furthermore, levels of hepatic β-hydroxybutyrate, which is a type of ketone body, were increased by CnP in a dose-dependent manner. Finally, CnP increased the expression of the autophagosomal marker LC3-II and decreased the expression of p62, which are known to be selectively degraded during autophagy. These results indicate that CnP inhibits hepatic steatosis through the stimulation of β-oxidation and autophagy in the liver. Therefore, CnP might prove to be a suitable therapeutic target for NAFLD.

    Topics: Animals; Autophagy; Carnitine O-Palmitoyltransferase; Diet, High-Fat; Fatty Liver; Gene Expression Regulation; Liver; Male; Mice, Inbred BALB C; Non-alcoholic Fatty Liver Disease; PPAR alpha; Vinca Alkaloids

2019
Conophylline inhibits non-alcoholic steatohepatitis in mice.
    PloS one, 2017, Volume: 12, Issue:6

    Conophylline (CnP), a vinca alkaloid extracted from the leaves of the tropical plant Ervatamia microphylla, attenuates hepatic fibrosis in mice. However, little is known about whether CnP inhibits steatosis, inflammation, and fibrosis in non-alcoholic steatohepatitis (NASH) in mice. A methionine-choline-deficient (MCD) diet was administered to male db/db mice as a NASH model, and CnP (1 μg/kg/d) was co-administered. Eight weeks after the commencement of the MCD diet, hepatic steatosis, inflammation, and fibrosis, and hepatic fat metabolism-, inflammation-, and fibrosis-related markers were examined. Feeding on an MCD for 8 weeks induced hepatic steatosis, inflammation, and fibrosis. CnP significantly attenuated the MCD-induced increases in hepatic steatosis, as well as hepatic inflammation and fibrosis. The MCD diet increased hepatic transforming growth factor-β (TGF-β) mRNA levels, which are correlated with hepatic steatosis, inflammation, and fibrosis. The diet also attenuated acyl-coenzyme A oxidase 1 (ACOX1) and carnitine palmitoyltransferase 1 (CPT1) mRNA levels, which are involved in β-oxidation. The putative mechanism of the CnP effect involves reduced hepatic TGF-β mRNA levels, and increased mRNA levels of hepatic peroxisome proliferator-activated receptor (PPAR) α and its target genes ACOX1 and CPT1. The results of this study indicate that CnP inhibits steatohepatitis, possibly through the inhibition of hepatic TGF-β mRNA levels, and induces an increase in PPARα mRNA levels, resulting in the attenuation of hepatic steatosis, inflammation, and fibrosis in mice. CnP might accordingly be a suitable therapeutic option for NASH.

    Topics: Alanine Transaminase; Animals; Fatty Acids, Nonesterified; Fatty Liver; Immunohistochemistry; Inflammation; Lipid Metabolism; Liver; Male; Malondialdehyde; Mice; Non-alcoholic Fatty Liver Disease; Real-Time Polymerase Chain Reaction; RNA; Triglycerides; Vinca Alkaloids

2017