concanavalin-a and Carcinogenesis

concanavalin-a has been researched along with Carcinogenesis* in 2 studies

Other Studies

2 other study(ies) available for concanavalin-a and Carcinogenesis

ArticleYear
Biophysical evidence for differential gallated green tea catechins binding to membrane type-1 matrix metalloproteinase and its interactors.
    Biophysical chemistry, 2018, Volume: 234

    Membrane type-1 matrix metalloproteinase (MT1-MMP) is a transmembrane MMP which triggers intracellular signaling and regulates extracellular matrix proteolysis, two functions that are critical for tumor-associated angiogenesis and inflammation. While green tea catechins, particularly epigallocatechin gallate (EGCG), are considered very effective in preventing MT1-MMP-mediated functions, lack of structure-function studies and evidence regarding their direct interaction with MT1-MMP-mediated biological activities remain. Here, we assessed the impact in both cellular and biophysical assays of four ungallated catechins along with their gallated counterparts on MT1-MMP-mediated functions and molecular binding partners. Concanavalin-A (ConA) was used to trigger MT1-MMP-mediated proMMP-2 activation, expression of MT1-MMP and of endoplasmic reticulum stress biomarker GRP78 in U87 glioblastoma cells. We found that ConA-mediated MT1-MMP induction was inhibited by EGCG and catechin gallate (CG), that GRP78 induction was inhibited by EGCG, CG, and gallocatechin gallate (GCG), whereas proMMP-2 activation was inhibited by EGCG and GCG. Surface plasmon resonance was used to assess direct interaction between catechins and MT1-MMP interactors. We found that gallated catechins interacted better than their ungallated analogs with MT1-MMP as well as with MT1-MMP binding partners MMP-2, TIMP-2, MTCBP-1 and LRP1-clusterIV. Overall, current structure-function evidence supports a role for the galloyl moiety in both direct and indirect interactions of green tea catechins with MT1-MMP-mediated oncogenic processes.

    Topics: Carcinogenesis; Catechin; Cell Line, Tumor; Concanavalin A; Endoplasmic Reticulum Chaperone BiP; Enzyme Precursors; Gelatinases; Glioblastoma; Heat-Shock Proteins; Humans; Matrix Metalloproteinase 14; Matrix Metalloproteinase Inhibitors; Protein Binding; Structure-Activity Relationship; Tea

2018
Effect of polyclonal activators on cytokine production by blood cells and by malignant breast cancer cells.
    Doklady biological sciences : proceedings of the Academy of Sciences of the USSR, Biological sciences sections, 2016, Volume: 466

    The production of cytokines by peripheral blood cells and biopsy specimens of tumors stimulated by polyclonal activators (PAs) was evaluated in 34 patients with invasive ductal breast carcinoma using enzyme-linked immunosorbent assay (ELISA). Positive correlation between the stimulation index of polyclonal activators (SIPA) for IL-18 production by the tumor and the relative content of poorly differentiated cells was revealed. The latter, in turn, was positively correlated with the numbers of normal and pathologic mitoses and the degree of malignancy. Cancer cells can produce IL-18, which is involved in the process of angiogenesis, stimulates invasion and metastasis. Decrease in SIPA for the production of IL-6 and GCSF by peripheral blood cells could serve as an indicator of malignant progression in invasive ductal breast carcinoma.

    Topics: Blood Cells; Carcinogenesis; Carcinoma, Ductal, Breast; Concanavalin A; Enzyme-Linked Immunosorbent Assay; Female; Granulocyte Colony-Stimulating Factor; Humans; Interleukin-18; Interleukin-6; Lipopolysaccharides; Mitosis; Neoplasm Invasiveness; Neoplasm Metastasis; Neovascularization, Pathologic; Phytohemagglutinins

2016