concanamycin-a and Disease-Resistance

concanamycin-a has been researched along with Disease-Resistance* in 1 studies

Other Studies

1 other study(ies) available for concanamycin-a and Disease-Resistance

ArticleYear
The role of autophagy in chloroplast degradation and chlorophagy in immune defenses during Pst DC3000 (AvrRps4) infection.
    PloS one, 2013, Volume: 8, Issue:8

    Chlorosis of leaf tissue normally observed during pathogen infection may result from the degradation of chloroplasts. There is a growing evidence to suggest that the chloroplast plays a significant role during pathogen infection. Although most degradation of the organelles and cellular structures in plants is mediated by autophagy, its role in chloroplast catabolism during pathogen infection is largely unknown.. In this study, we investigated the function of autophagy in chloroplast degradation during avirulent Pst DC3000 (AvrRps4) infection. We examined the expression of defensive marker genes and suppression of bacterial growth using the electrolyte leakage assay in normal light (N) and low light (L) growing environments of wild-type and atg5-1 plants during pathogen treatment. Stroma-targeted GFP proteins (CT-GFP) were observed with LysoTracker Red (LTR) staining of autophagosome-like structures in the vacuole. The results showed that Arabidopsis expressed a significant number of small GFP-labeled bodies when infected with avirulent Pst DC3000 (AvrRps4). While barely detectable, there were small GFP-labeled bodies in plants with the CT-GFP expressing atg5-1 mutation. The results showed that chloroplast degradation depends on autophagy and this may play an important role in inhibiting pathogen growth.. Autophagy plays a role in chloroplast degradation in Arabidopsis during avirulent Pst DC3000 (AvrRps4) infection. Autophagy dependent chloroplast degradation may be the primary source of reactive oxygen species (ROS) as well as the pathogen-response signaling molecules that induce the defense response.

    Topics: Arabidopsis; Autophagy; Chlorophyll; Chloroplasts; Disease Resistance; Fluorescence; Gene Expression Regulation, Plant; Genes, Plant; Green Fluorescent Proteins; Hydrogen Peroxide; Macrolides; Mesophyll Cells; Phenotype; Plant Diseases; Plant Immunity; Plant Leaves; Pseudomonas syringae; Vacuoles; Virulence

2013