cog1410 has been researched along with Movement-Disorders* in 3 studies
3 other study(ies) available for cog1410 and Movement-Disorders
Article | Year |
---|---|
ApoE mimetic ameliorates motor deficit and tissue damage in rat spinal cord injury.
Apolipoprotein E (apoE), a plasma protein responsible for transporting lipid and cholesterol, modulates responses of the central nervous system to injury. Small peptides derived from the receptor-binding region of apoE can simulate some important bioactivities of apoE holoprotein and offer neuroprotection against brain injury. We tested whether COG1410, an apoE-mimetic peptide, provides protection in a rat model of spinal cord injury (SCI). Traumatic injury was created at T8 by a cortical impact device. Injured rats were randomized to four treatment groups: vehicle, 0.15, 0.3, or 0.6 mg/kg COG1410; sham surgery rats received vehicle. Basso, Beattie, Bresnahan neurological score was evaluated prior to injury and at 1, 3, 7, and 14 days after injury. Histological changes were evaluated at 14 days. All injured rats lost body weight during the first week following injury. Body weight recovery was significantly improved in rats treated with COG1410. Mechanical impact resulted in severe motor deficit, and most animals had a BBB score of 0-1 at 24 hours postinjury. COG1410-treated rats showed significantly improved functional recovery and ameliorated motor deficit at 14 days postinjury. Histological analysis showed that COG1410 groups had a significantly reduced lesion size at the site of injury, a larger preserved luxol fast blue-stained area, and more visible neurons in the surrounding area of injury. Microglial activation was also significantly suppressed. These findings indicate that this apoE mimetic effectively improved neurological and histological outcome following SCI in rats, and the effect was associated with inhibition of microglial activation. Topics: Animals; Apolipoproteins E; Body Weight; Cell Death; Disease Models, Animal; Dose-Response Relationship, Drug; Leukoencephalopathies; Male; Microglia; Movement Disorders; Neurologic Examination; Neurons; Rats; Rats, Wistar; Recovery of Function; Spinal Cord Injuries | 2014 |
ApolipoproteinE mimetic peptides improve outcome after focal ischemia.
Growing clinical evidence implicates isoform-specific effects of apolipoprotein E (apoE) in reducing neuroinflammation and mediating adaptive responses following ischemic and traumatic brain injury. However, the intact apoE holoprotein does not cross the blood-brain barrier and thus has limited therapeutic potential. We have created a small peptide, COG1410 (acetyl-AS-Aib-LRKL-Aib-KRLL-amide), derived from the apoE receptor-binding region. COG1410 retains the anti-inflammatory and neuroprotective biological properties of the intact holoprotein and penetrates the blood-brain barrier. In the current study, we utilized a murine model of transient focal cerebral ischemia and reperfusion to demonstrate that intravenous (IV) administration of COG1410 reduces infarct volume and radiographic progression of infarct, and improves functional outcome as assessed by rotarod when delivered up to 4h after ischemia onset. Topics: Analysis of Variance; Animals; Apolipoproteins E; Brain Edema; Brain Infarction; Chromatography, Liquid; Disease Models, Animal; Encephalitis; Functional Laterality; Gene Expression Regulation; Infarction, Middle Cerebral Artery; Magnetic Resonance Imaging; Male; Mass Spectrometry; Mice; Mice, Inbred C57BL; Movement Disorders; Recovery of Function; RNA, Messenger; Time Factors; Tumor Necrosis Factor-alpha | 2013 |
The novel apolipoprotein E-based peptide COG1410 improves sensorimotor performance and reduces injury magnitude following cortical contusion injury.
It has previously been shown that small peptide molecules derived from the apolipoprotein E (ApoE) receptor binding region are anti-inflammatory in nature and can improve outcome following head injury. The present study evaluated the preclinical efficacy of COG1410, a small molecule ApoE-mimetic peptide (1410 daltons), following cortical contusion injury (CCI). Animals were prepared with a unilateral CCI of the sensorimotor cortex (SMC) or sham procedure. Thirty mins post-CCI the animals received i.v. infusions of 0.8 mg/kg COG1410, 0.4 mg/kg COG1410, or vehicle. Starting on day 2, the animals were tested on a battery of behavioral measures to assess sensorimotor (vibrissae-forelimb placing and forelimb use-asymmetry), and motor (tapered balance beam) performance. Administration of the 0.8 mg/kg dose of COG1410 significantly improved recovery on the vibrissae-forelimb and limb asymmetry tests. However, no facilitation was observed on the tapered beam. The low dose (0.4 mg/kg) of COG1410 did not show any significant differences compared to vehicle. Lesion analysis revealed that the 0.8 mg/kg dose of COG1410 significantly reduced the size of the injury cavity compared to the 0.4 mg/kg dose and vehicle. The 0.8 mg/kg dose also reduced the number of glial fibrillary acid protein (GFAP+) reactive cells in the injured cortex. These results suggest that a single dose of COG1410 facilitates behavioral recovery and provides neuroprotection in a dose and task-dependent manner. Thus, the continued clinical development of ApoE based therapeutics is warranted and could represent a novel strategy for the treatment of traumatic brain injuries. Topics: Animals; Anti-Inflammatory Agents; Apolipoproteins E; Astrocytes; Brain Injuries; Disease Models, Animal; Dose-Response Relationship, Drug; Glial Fibrillary Acidic Protein; Gliosis; Male; Movement; Movement Disorders; Nerve Degeneration; Neuroprotective Agents; Peptides; Rats; Rats, Sprague-Dawley; Recovery of Function; Treatment Outcome | 2007 |