cog1410 and Brain-Injuries

cog1410 has been researched along with Brain-Injuries* in 6 studies

Other Studies

6 other study(ies) available for cog1410 and Brain-Injuries

ArticleYear
Apolipoprotein E-Mimetic COG1410 Reduces Acute Vasogenic Edema following Traumatic Brain Injury.
    Journal of neurotrauma, 2016, Jan-15, Volume: 33, Issue:2

    The degree of post-traumatic brain edema and dysfunction of the blood-brain barrier (BBB) influences the neurofunctional outcome after a traumatic brain injury (TBI). Previous studies have demonstrated that the administration of apolipoprotein E-mimetic peptide COG1410 reduces the brain water content after subarachnoid hemorrhage, intra-cerebral hemorrhage, and focal brain ischemia. However, the effects of COG1410 on vasogenic edema following TBI are not known. The current study evaluated the effects of 1 mg/kg daily COG1410 versus saline administered intravenously after a controlled cortical impact (CCI) injury on BBB dysfunction and vasogenic edema at an acute stage in mice. The results demonstrated that treatment with COG1410 suppressed the activity of matrix metalloproteinase-9, reduced the disruption of the BBB and Evans Blue dye extravasation, reduced the TBI lesion volume and vasogenic edema, and decreased the functional deficits compared with mice treated with vehicle, at an acute stage after CCI. These findings suggest that COG1410 is a promising preclinical therapeutic agent for the treatment of traumatic brain injury.

    Topics: Animals; Apolipoproteins E; Behavior, Animal; Blood-Brain Barrier; Brain Edema; Brain Injuries; Disease Models, Animal; Male; Matrix Metalloproteinase 9; Mice; Mice, Inbred C57BL; Recovery of Function

2016
Administration of COG1410 reduces axonal amyloid precursor protein immunoreactivity and microglial activation after controlled cortical impact in mice.
    Journal of neurotrauma, 2012, Volume: 29, Issue:13

    Traumatic axonal injury (TAI) accounts for at least 35% of the morbidity and mortality in traumatic brain injury (TBI) patients without space-occupying lesions. It is also believed to be a key determinant of adverse outcomes such as cognitive dysfunction across the spectrum of TBI severity. Previous studies have shown that COG1410, a synthetic peptide derived from the apolipoprotein E (apoE) receptor binding region, has anti-inflammatory effects after experimental TBI, with improvements in cognitive recovery. However, the effects of COG1410 on axonal injury following TBI are not known. The current study evaluated the effects of 1 mg/kg daily COG1410 versus saline administered intravenously starting 30 min after controlled cortical impact (CCI) injury on pericontusional TAI in young, wild-type C57BL6/J male mice. We found that COG1410 did not affect the number of amyloid precursor protein (APP)-immunoreactive axonal varicosities in the pericontusional corpus callosum and external capsule at 24 h, but reduced APP-immunoreactive varicosities by 31% at 3 days (p=0.0023), and 36% at 7 days (p=0.0009). COG1410 significantly reduced the number of Iba1-positive cells with activated microglial morphology at all three time points by 21-30%. There was no effect of COG1410 on pericontusional white matter volume or silver staining at any time point. This indicates a possible effect of COG1410 on delayed but not immediate TAI. Future studies are needed to investigate the underlying mechanisms, therapeutic time window, and physiological implications of this effect.

    Topics: Amyloid beta-Protein Precursor; Animals; Apolipoproteins E; Axons; Brain Injuries; Cerebral Cortex; Disease Models, Animal; Down-Regulation; Male; Mice; Mice, Inbred C57BL; Microglia; Neuroprotective Agents

2012
COG1410, an apolipoprotein E-based peptide, improves cognitive performance and reduces cortical loss following moderate fluid percussion injury in the rat.
    Behavioural brain research, 2010, Dec-25, Volume: 214, Issue:2

    COG1410, a small, novel ApoE-mimetic peptide derived from the receptor binding region of apolipoprotein E (ApoE), has been classified as anti-inflammatory in nature and improves motor, sensorimotor, and cognitive dysfunction following cortical contusion injury (CCI). In order to further examine COG1410's preclinical efficacy on cognitive recovery, the present study evaluated COG1410 following moderate fluid percussion injury (FPI). Animals were prepared with a moderate, unilateral FPI over the hippocampus. Following FPI, animals received a regimen of five doses of COG1410 or vehicle at 2 and 4h (1.0mg/kg, i.v.) followed by additional doses administered 24, 48, and 72 h (1.0mg/kg, i.p.). Prior to injury, animals were trained for 4 days (4 trials/day) in the Morris water maze (MWM) and then tested for retrograde amnesia on post-FPI day 11 and then on a working memory task on day 18. Testing for motor dysfunction on the tapered balanced beam began on day 2 post-FPI. Administration of this regimen of COG1410 significantly improved retention of memory in the retrograde amnesia test compared to vehicle post-FPI. However, COG1410 did not significantly improve acquisition of working memory in the MWM. Motor dysfunction on the tapered beam post-FPI was improved in the COG1410-treated group compared to vehicle treatment. Cortical lesion analysis revealed that the COG1410-treated animals demonstrated significantly less tissue loss compared to vehicle-treated animals. The results of this study suggest that COG1410 significantly limited the behavioral dysfunction and tissue loss associated with FPI and demonstrated continued preclinical efficacy for TBI.

    Topics: Animals; Apolipoproteins E; Brain Injuries; Cerebral Cortex; Cognition Disorders; Disease Models, Animal; Drug Administration Schedule; Hippocampus; Injections, Intraperitoneal; Injections, Intravenous; Male; Memory Disorders; Rats; Rats, Long-Evans; Recovery of Function

2010
COG1410 improves cognitive performance and reduces cortical neuronal loss in the traumatically injured brain.
    Journal of neurotrauma, 2009, Volume: 26, Issue:1

    We have previously shown that a single dose of COG1410, a small molecule ApoE-mimetic peptide derived from the apolipoprotein E (ApoE) receptor binding region, improves sensorimotor and motor outcome following cortical contusion injury (CCI). The present study evaluated a regimen of COG1410 following frontal CCI in order to examine its preclinical efficacy on cognitive recovery. Animals were prepared with a bilateral CCI of the frontal cortex. A regimen of COG1410 (0.8mg/kg intravenously [IV]) was administered twice, at 30min and again at 24h post-CCI. Starting on day 11, the animals were tested for their acquisition of a reference memory task in the Morris water maze (MWM), followed by a working memory task in the MWM on day 15. Following CCI, the animals were also tested on the bilateral tactile adhesive removal test to measure sensorimotor dysfunction. On all of the behavioral tests the COG1410 group was no different from the uninjured sham group. Administration of the regimen of COG1410 significantly improved recovery on the reference and working memory tests, as well as on the sensorimotor test. Lesion analysis revealed that COG1410 significantly reduced the size of the injury cavity. Administration of COG1410 also reduced the number of degenerating neurons, as measured by Fluoro-Jade C staining, in the frontal cortex at 48h post-CCI. These results suggest that a regimen of COG1410 appeared to block the development of significant behavioral deficits and reduced tissue loss. These combined findings suggest that COG1410 appears to have strong preclinical efficacy when administered following traumatic brain injury (TBI).

    Topics: Animals; Apolipoproteins E; Brain Injuries; Cerebral Cortex; Cognition Disorders; Coloring Agents; Disease Models, Animal; Fluoresceins; Injections, Intravenous; Male; Maze Learning; Nerve Degeneration; Neurons; Neuroprotective Agents; Rats; Rats, Sprague-Dawley; Recovery of Function; Treatment Outcome

2009
COG1410, a novel apolipoprotein E-based peptide, improves functional recovery in a murine model of traumatic brain injury.
    Journal of neurotrauma, 2007, Volume: 24, Issue:7

    Traumatic brain injury (TBI) is a silent epidemic affecting approximately 1.4 million Americans annually, at an estimated annual cost of $60 billion in the United States alone. Despite an increased understanding of the pathophysiology of closed head injury, there remains no pharmacological intervention proven to improve functional outcomes in this setting. Currently, the existing standard of care for TBI consists primarily of supportive measures. Apolipoprotein E (apoE) is the primary apolipoprotein synthesized in the brain in response to injury, where it modulates several components of the neuroinflammatory cascade associated with TBI. We have previously demonstrated that COG133, an apoE mimetic peptide, improved functional outcomes and attenuated neuronal death when administered as a single intravenous injection at 30 min post-TBI in mice. Using the principles of rational drug design, we developed a more potent analog, COG1410, which expands the therapeutic window for the treatment of TBI by a factor of four, from 30 min to 2 h. Mice that received a single intravenous injection of COG1410 at 120 min post-TBI exhibited significant improvement on a short term test of vestibulomotor function and on a long term test of spatial learning and memory. This was associated with a significant attenuation of microglial activation and neuronal death in the hippocampus, the neuroanatomical substrate for learning and memory. Rationally derived apoE mimetic peptides have been demonstrated to exert neuroprotective and anti-inflammatory effects in vitro and in clinically relevant models of brain injury. This represents a novel therapeutic strategy in the treatment of TBI.

    Topics: Animals; Anti-Inflammatory Agents; Apolipoproteins E; Brain; Brain Injuries; Cell Line; Disease Models, Animal; Encephalitis; Gliosis; Hippocampus; Injections, Intravenous; Male; Memory Disorders; Mice; Mice, Inbred C57BL; Microglia; Neuroprotective Agents; Peptides; Recovery of Function; Time Factors; Treatment Outcome

2007
The novel apolipoprotein E-based peptide COG1410 improves sensorimotor performance and reduces injury magnitude following cortical contusion injury.
    Journal of neurotrauma, 2007, Volume: 24, Issue:7

    It has previously been shown that small peptide molecules derived from the apolipoprotein E (ApoE) receptor binding region are anti-inflammatory in nature and can improve outcome following head injury. The present study evaluated the preclinical efficacy of COG1410, a small molecule ApoE-mimetic peptide (1410 daltons), following cortical contusion injury (CCI). Animals were prepared with a unilateral CCI of the sensorimotor cortex (SMC) or sham procedure. Thirty mins post-CCI the animals received i.v. infusions of 0.8 mg/kg COG1410, 0.4 mg/kg COG1410, or vehicle. Starting on day 2, the animals were tested on a battery of behavioral measures to assess sensorimotor (vibrissae-forelimb placing and forelimb use-asymmetry), and motor (tapered balance beam) performance. Administration of the 0.8 mg/kg dose of COG1410 significantly improved recovery on the vibrissae-forelimb and limb asymmetry tests. However, no facilitation was observed on the tapered beam. The low dose (0.4 mg/kg) of COG1410 did not show any significant differences compared to vehicle. Lesion analysis revealed that the 0.8 mg/kg dose of COG1410 significantly reduced the size of the injury cavity compared to the 0.4 mg/kg dose and vehicle. The 0.8 mg/kg dose also reduced the number of glial fibrillary acid protein (GFAP+) reactive cells in the injured cortex. These results suggest that a single dose of COG1410 facilitates behavioral recovery and provides neuroprotection in a dose and task-dependent manner. Thus, the continued clinical development of ApoE based therapeutics is warranted and could represent a novel strategy for the treatment of traumatic brain injuries.

    Topics: Animals; Anti-Inflammatory Agents; Apolipoproteins E; Astrocytes; Brain Injuries; Disease Models, Animal; Dose-Response Relationship, Drug; Glial Fibrillary Acidic Protein; Gliosis; Male; Movement; Movement Disorders; Nerve Degeneration; Neuroprotective Agents; Peptides; Rats; Rats, Sprague-Dawley; Recovery of Function; Treatment Outcome

2007