coenzyme-q10 and Hypoglycemia

coenzyme-q10 has been researched along with Hypoglycemia* in 2 studies

Other Studies

2 other study(ies) available for coenzyme-q10 and Hypoglycemia

ArticleYear
Acute Hypoglycemia Induces Painful Neuropathy and the Treatment of Coenzyme Q10.
    Journal of diabetes research, 2016, Volume: 2016

    Diabetic neuropathic pain is reduced with tight glycemic control. However, strict control increases the risk of hypoglycemic episodes, which are themselves linked to painful neuropathy. This study explored the effects of hypoglycemia-related painful neuropathy. Pretreatment with coenzyme Q10 (CoQ10) was performed to explore the preventive effect of CoQ10 on hypoglycemia-related acute neuropathic pain. Two strains of mice were used and 1 unit/kg of insulin was given to induce hypoglycemia. Mechanical sensitivity of hindpaw withdrawal thresholds was measured using von Frey filaments. Blood glucose levels were clamped at normal levels by joint insulin and glucose injection to test whether insulin itself induced hypersensitivity. Results suggest that the increased mechanical sensitivity after insulin injection is related to decreased blood glucose levels. When blood glucose levels remained at a normal level by the linked administration of insulin and glucose, mice demonstrated no significant change in mechanical sensitivity. Pretreatment with CoQ10 prevented neuropathic pain and the expression of the stress factor c-Fos. These results support the concept that pain in the diabetic scenario can be the result of hypoglycemia and not insulin itself. Additionally, pretreatment with CoQ10 may be a potent preventive method for the development of neuropathic pain.

    Topics: Acute Disease; Analgesics; Animals; Biomarkers; Blood Glucose; Disease Models, Animal; Hyperalgesia; Hypoglycemia; Insulin; Mice, Inbred C57BL; Mice, Inbred CBA; Neuralgia; Pain Threshold; Proto-Oncogene Proteins c-fos; Spinal Cord; Time Factors; Ubiquinone

2016
Highly efficient ketone body treatment in multiple acyl-CoA dehydrogenase deficiency-related leukodystrophy.
    Pediatric research, 2015, Volume: 77, Issue:1-1

    Multiple acyl-CoA dehydrogenase deficiency- (MADD-), also called glutaric aciduria type 2, associated leukodystrophy may be severe and progressive despite conventional treatment with protein- and fat-restricted diet, carnitine, riboflavin, and coenzyme Q10. Administration of ketone bodies was described as a promising adjunct, but has only been documented once.. We describe a Portuguese boy of consanguineous parents who developed progressive muscle weakness at 2.5 y of age, followed by severe metabolic decompensation with hypoglycaemia and coma triggered by a viral infection. Magnetic resonance (MR) imaging showed diffuse leukodystrophy. MADD was diagnosed by biochemical and molecular analyses. Clinical deterioration continued despite conventional treatment. Enteral sodium D,L-3-hydroxybutyrate (NaHB) was progressively introduced and maintained at 600 mg/kg BW/d (≈ 3% caloric need). Follow up was 3 y and included regular clinical examinations, biochemical studies, and imaging.. During follow up, the initial GMFC-MLD (motor function classification system, 0 = normal, 6 = maximum impairment) level of 5-6 gradually improved to 1 after 5 mo. Social functioning and quality of life recovered remarkably. We found considerable improvement of MR imaging and spectroscopy during follow up, with a certain lag behind clinical recovery. There was some persistent residual developmental delay.. NaHB is a highly effective and safe treatment that needs further controlled studies.

    Topics: Brain; Carnitine; Child, Preschool; Coma; Consanguinity; Dietary Fats; Hereditary Central Nervous System Demyelinating Diseases; Humans; Hypoglycemia; Ketones; Magnetic Resonance Imaging; Male; Multiple Acyl Coenzyme A Dehydrogenase Deficiency; Muscle Weakness; Riboflavin; Treatment Outcome; Ubiquinone

2015