clp257 and Disease-Models--Animal

clp257 has been researched along with Disease-Models--Animal* in 2 studies

Other Studies

2 other study(ies) available for clp257 and Disease-Models--Animal

ArticleYear
KCC2 function modulates in vitro ictogenesis.
    Neurobiology of disease, 2015, Volume: 79

    GABAA receptor-mediated inhibition is active and may contribute to epileptiform synchronization. The efficacy of inhibition relies on low levels of intracellular Cl(-), which are controlled by KCC2 activity. This evidence has led us to analyze with field potential recordings the effects induced by the KCC2 blockers VU0240551 (10 μM) or bumetanide (50 μM) and by the KCC2 enhancer CLP257 (100 μM) on the epileptiform discharges generated by piriform and entorhinal cortices (PC and EC, respectively) in an in vitro brain slice preparation. Ictal- and interictal-like discharges along with high-frequency oscillations (HFOs, ripples: 80-200 Hz, fast ripples: 250-500 Hz) were recorded from these two regions during application of 4-aminopyridine (4AP, 50 μM). Blocking KCC2 activity with either VU024055 or high doses of bumetanide abolished ictal discharge in both PC and EC; in addition, these experimental procedures decreased the interval of occurrence and duration of interictal discharges. In contrast, enhancing KCC2 activity with CLP257 increased ictal discharge duration in both regions. Finally, blocking KCC2 activity decreased the duration and amplitude of pharmacologically isolated synchronous GABAergic events whereas enhancing KCC2 activity led to an increase in their duration. Our data demonstrate that in vitro ictogenesis is abolished or facilitated by inhibiting or enhancing KCC2 activity, respectively. We propose that these effects may result from the reduction of GABAA receptor-dependent increases in extracellular K(+) that are known to rest on KCC2 function.

    Topics: 4-Aminopyridine; 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Bumetanide; Cerebral Cortex; Disease Models, Animal; Dose-Response Relationship, Drug; Epilepsy; Excitatory Amino Acid Antagonists; K Cl- Cotransporters; Male; Rats, Sprague-Dawley; Sodium Potassium Chloride Symporter Inhibitors; Symporters; Thiazoles; Thiazolidines; Thioglycolates; Tissue Culture Techniques

2015
Chloride extrusion enhancers as novel therapeutics for neurological diseases.
    Nature medicine, 2013, Volume: 19, Issue:11

    The K(+)-Cl(-) cotransporter KCC2 is responsible for maintaining low Cl(-) concentration in neurons of the central nervous system (CNS), which is essential for postsynaptic inhibition through GABA(A) and glycine receptors. Although no CNS disorders have been associated with KCC2 mutations, loss of activity of this transporter has emerged as a key mechanism underlying several neurological and psychiatric disorders, including epilepsy, motor spasticity, stress, anxiety, schizophrenia, morphine-induced hyperalgesia and chronic pain. Recent reports indicate that enhancing KCC2 activity may be the favored therapeutic strategy to restore inhibition and normal function in pathological conditions involving impaired Cl(-) transport. We designed an assay for high-throughput screening that led to the identification of KCC2 activators that reduce intracellular chloride concentration ([Cl(-)]i). Optimization of a first-in-class arylmethylidine family of compounds resulted in a KCC2-selective analog (CLP257) that lowers [Cl(-)]i. CLP257 restored impaired Cl(-) transport in neurons with diminished KCC2 activity. The compound rescued KCC2 plasma membrane expression, renormalized stimulus-evoked responses in spinal nociceptive pathways sensitized after nerve injury and alleviated hypersensitivity in a rat model of neuropathic pain. Oral efficacy for analgesia equivalent to that of pregabalin but without motor impairment was achievable with a CLP257 prodrug. These results validate KCC2 as a druggable target for CNS diseases.

    Topics: Analgesics; Animals; Chlorides; CHO Cells; Cricetinae; Cricetulus; Disease Models, Animal; HEK293 Cells; High-Throughput Screening Assays; Humans; Intracellular Fluid; Ion Transport; K Cl- Cotransporters; Male; Nervous System Diseases; Neuralgia; Rats; Rats, Sprague-Dawley; Symporters; Thiazolidines

2013