clozapine and Demyelinating-Diseases

clozapine has been researched along with Demyelinating-Diseases* in 2 studies

Other Studies

2 other study(ies) available for clozapine and Demyelinating-Diseases

ArticleYear
Antipsychotic drugs counteract autophagy and mitophagy in multiple sclerosis.
    Proceedings of the National Academy of Sciences of the United States of America, 2021, 06-15, Volume: 118, Issue:24

    Multiple sclerosis (MS) is a neuroinflammatory and neurodegenerative disease characterized by myelin damage followed by axonal and ultimately neuronal loss. The etiology and physiopathology of MS are still elusive, and no fully effective therapy is yet available. We investigated the role in MS of autophagy (physiologically, a controlled intracellular pathway regulating the degradation of cellular components) and of mitophagy (a specific form of autophagy that removes dysfunctional mitochondria). We found that the levels of autophagy and mitophagy markers are significantly increased in the biofluids of MS patients during the active phase of the disease, indicating activation of these processes. In keeping with this idea, in vitro and in vivo MS models (induced by proinflammatory cytokines, lysolecithin, and cuprizone) are associated with strongly impaired mitochondrial activity, inducing a lactic acid metabolism and prompting an increase in the autophagic flux and in mitophagy. Multiple structurally and mechanistically unrelated inhibitors of autophagy improved myelin production and normalized axonal myelination, and two such inhibitors, the widely used antipsychotic drugs haloperidol and clozapine, also significantly improved cuprizone-induced motor impairment. These data suggest that autophagy has a causal role in MS; its inhibition strongly attenuates behavioral signs in an experimental model of the disease. Therefore, haloperidol and clozapine may represent additional therapeutic tools against MS.

    Topics: Animals; Antipsychotic Agents; Autophagy; Autophagy-Related Proteins; Axons; Biomarkers; Clozapine; Cytokines; Demyelinating Diseases; Disease Models, Animal; Glucose; Haloperidol; Inflammation; Interleukin-1beta; Mitochondria; Mitophagy; Models, Biological; Motor Activity; Multiple Sclerosis; Myelin Basic Protein; Myelin Sheath; Stress, Physiological; Tumor Necrosis Factor-alpha

2021
Clozapine administration enhanced functional recovery after cuprizone demyelination.
    PloS one, 2019, Volume: 14, Issue:5

    The atypical antipsychotic agent, clozapine, is used to treat a variety of neurological disorders including schizophrenia and Parkinson's disease and readily crosses the blood brain barrier to interact with a wide range of neuroreceptors including those for dopamine and serotonin. Recent work has shown that clozapine can reduce neuroinflammation in experimental autoimmune encephalomyelitis, a neuroinflammatory model of multiple sclerosis (MS) and mediates its effects in the central nervous system. To further characterise the protection provided by clozapine, the cuprizone model of demyelination was used to assess the effect of clozapine treatment on the cellular events surrounding demyelination and remyelination. Using this model of non-immune demyelination, we found that clozapine administration was unable to prevent demyelination, but when administered post demyelination, was able to enhance the rate of functional recovery. The more rapid improvement of clozapine-treated mice correlated with a decreased level of astrocyte and microglial activation but only modestly enhanced remyelination. Together, these studies highlight the potential of clozapine to support enhanced functional recovery after demyelination, such as that occurring during MS.

    Topics: Animals; Astrocytes; Central Nervous System; Clozapine; Cuprizone; Demyelinating Diseases; Disease Models, Animal; Encephalomyelitis, Autoimmune, Experimental; Female; Mice; Mice, Inbred C57BL; Multiple Sclerosis; Myelin Sheath

2019