clove has been researched along with Flea-Infestations* in 5 studies
5 other study(ies) available for clove and Flea-Infestations
Article | Year |
---|---|
Knockdown resistance mutations are common and widely distributed in Xenopsylla cheopis fleas that transmit plague in Madagascar.
Plague, caused by the bacterium Yersinia pestis, remains an important disease in Madagascar, where the oriental rat flea, Xenopsylla cheopis, is a primary vector. To control fleas, synthetic pyrethroids (SPs) have been used for >20 years, resulting in resistance in many X. cheopis populations. The most common mechanisms of SP resistance are target site mutations in the voltage-gated sodium channel (VGSC) gene.. We obtained 25 collections of X. cheopis from 22 locations across Madagascar and performed phenotypic tests to determine resistance to deltamethrin, permethrin, and/or dichlorodiphenyltrichloroethane (DDT). Most populations were resistant to all these insecticides. We sequenced a 535 bp segment of the VGSC gene and identified two different mutations encoding distinct substitutions at amino acid position 1014, which is associated with knockdown resistance (kdr) to SPs in insects. Kdr mutation L1014F occurred in all 25 collections; a rarer mutation, L1014H, was found in 12 collections. There was a significant positive relationship between the frequency of kdr alleles and the proportion of individuals surviving exposure to deltamethrin. Phylogenetic comparisons of 12 VGSC alleles in Madagascar suggested resistant alleles arose from susceptible lineages at least three times. Because genotype can reasonably predict resistance phenotype, we developed a TaqMan PCR assay for the rapid detection of kdr resistance alleles.. Our study provides new insights into VGSC mutations in Malagasy populations of X. cheopis and is the first to report a positive correlation between VGSC genotypes and SP resistance phenotypes in fleas. Widespread occurrence of these two SP resistance mutations in X. cheopis populations in Madagascar reduces the viability of these insecticides for flea control. However, the TaqMan assay described here facilitates rapid detection of kdr mutations to inform when use of these insecticides is still warranted to reduce transmission of plague. Topics: Animals; Flea Infestations; Humans; Insecticides; Madagascar; Mutation; Phylogeny; Plague; Rats; Siphonaptera; Xenopsylla; Yersinia pestis | 2023 |
Presence of the Oriental Rat Flea (Siphonaptera: Pulicidae) Infesting an Endemic Mammal and Confirmed Plague Circulation in a Forest Area of Madagascar.
The Oriental rat flea, Xenopsylla cheopis (Rothschild 1903), is a cosmopolitan flea usually found infesting domestic rats. This flea is a well-known major human plague vector in Madagascar. As part of field sampling, fleas and small mammals were collected in the village of South Andranofeno and the natural reserve of Sohisika, two sites of the district of Ankazobe, located in the Central Highlands of Madagascar. Rats inside houses and forest small mammals were trapped using Besancon Technical Services and pitfall traps, respectively. Their fleas were collected and preserved for laboratory works. Collected fleas from the village and forest belonged to five species, which were X. cheopis, Synopsyllus fonquerniei (Wagner and Roubaud 1932) (Siphonaptera: Pulicidae), Echidnophaga gallinacea (Westwood 1875) (Siphonaptera: Pulicidae), Ctenocephalides felisstrongylus (Jordan 1925) (Siphonaptera: Pulicidae), Pulex irritans (Linnaeus 1758) (Siphonaptera: Pulicidae). After sampling in the forest zone, one specimen of X. cheopis was unexpectedly collected while infesting an endemic tenrec Setifer setosus (Schreber 1777) (Afrosoricida: Tenrecidae). Polymerase chain reaction (PCR) diagnosis on all collected fleas allowed detecting plague bacterium Yersinia pestis (Lehmann and Neumann 1896) (Enterobacterales: Yersiniaceae) on nine specimens of the endemic flea S. fonquerniei collected inside forest. The presence of the oriental rat flea in forest highlights the connection between human and wild environments due to animal movements and the fact that the rat flea can infest various hosts. As only one specimen of X. cheopis was collected on S. setosus, we hypothesize that flea was carried from the village to forest. Yersinia pestis infection of forest fleas outlines plague circulation in this sylvatic area. Topics: Animal Distribution; Animals; Eulipotyphla; Flea Infestations; Forests; Madagascar; Plague; Rats; Xenopsylla; Yersinia pestis | 2020 |
Field assessment of insecticide dusting and bait station treatment impact against rodent flea and house flea species in the Madagascar plague context.
Bubonic is the most prevalent plague form in Madagascar. Indoor ground application of insecticide dust is the conventional method used to control potentially infected rodent fleas that transmit the plague bacterium from rodents to humans. The use of bait stations is an alternative approach for vector control during plague epidemics, as well as a preventive control method during non-epidemic seasons. Bait stations have many advantages, principally by reducing the amount of insecticide used, lowering the cost of the treatment and minimizing insecticide exposure in the environment. A previous study reported promising results on controlling simultaneously the reservoir and vectors, when slow-acting rodenticide was incorporated in bait stations called "BoƮtes de Kartman". However, little evidence of an effective control of the fleas prior to the elimination of rodents was found. In this study, we evaluated bait stations containing insecticide powder and non-toxic attractive rodent bait for their potential to control rat fleas. Its efficacy was compared to the standard method. The impact of both methods on indoor and outdoor rodent fleas, as well as the human household flea Pulex irritans were analyzed at different time points after treatments. Bait stations did not cause any significant immediate or delayed reduction of rat fleas and increasing the number of operational bait stations per household did not significantly improve their efficacy. Insecticide ground dusting appeared to be the most efficient method to control indoor rat fleas. Both methods appeared to have little impact on the density of outdoor rat fleas and human fleas. These results demonstrate limited effectiveness for bait stations and encourage the maintenance of insecticide dusting as a first-line control strategy in case of epidemic emergence of plague, when immediate effect on rodent fleas is needed. Recommendations are given to improve the efficacy of the bait station method. Topics: Animals; Flea Infestations; Humans; Insect Vectors; Insecticides; Madagascar; Pest Control; Plague; Rats; Rodentia; Siphonaptera; Yersinia pestis | 2019 |
The Fleas of Endemic and Introduced Small Mammals in Central Highland Forests of Madagascar: Faunistics, Species Diversity, and Absence of Host Specificity.
Data are presented on the flea species of the genera Paractenopsyllus (Ceratophyllidae, Leptopsyllinae) and Synopsyllus (Pulicidae, Xenopsyllinae) obtained from small mammals during two 2014 seasonal surveys at a montane humid forest site (Ambohitantely) in the Central Highlands of Madagascar. The mammal groups included the endemic family Tenrecidae (tenrecs) and subfamily Nesomyinae (rodents) and two introduced families Muridae (rodents) and Soricidae (shrews); no fleas were recovered from the latter family. The surveys were conducted at the end of the wet and dry seasons with 288 individual small mammals captured, including 12 endemic and four introduced species. These animals yielded 344 fleas, representing nine species endemic to Madagascar; no introduced species was collected. Some seasonal variation was found in the number of trapped small mammals, but no marked difference was found in species richness. For flea species represented by sufficient samples, no parasite-host specificity was found, and there is evidence for considerable lateral exchange in the local flea fauna between species of tenrecs and the two rodent families (endemic and introduced). The implications of these results are discussed with regards to small mammal species richness and community structure, as well as a possible mechanism for the maintenance of sylvatic cycles of bubonic plague in the montane forests of Madagascar. Topics: Animals; Biodiversity; Flea Infestations; Host Specificity; Host-Parasite Interactions; Introduced Species; Madagascar; Mammals; Siphonaptera | 2015 |
Xenopsylla cheopis (Siphonaptera: Pulicidae) susceptibility to Deltamethrin in Madagascar.
The incidence of bubonic plague in Madagascar is high. This study reports the susceptibility of 32 different populations of a vector, the flea Xenopsylla cheopis (Siphonaptera: Pulicidae), to the insecticide Deltamethrin. Despite the use of Deltamethrin against fleas, plague epidemics have re-emerged in Madagascar. The majority of the study sites were located in the Malagasy highlands where most plague cases have occurred over the last 10 years. X. cheopis fleas were tested for susceptibility to Deltamethrin (0.05%): only two populations were susceptible to Deltamethrin, four populations were tolerant and 26 populations were resistant. KD50 (50% Knock-Down) and KD90 (90% Knock-Down) times were determined, and differed substantially from 9.4 to 592.4 minutes for KD50 and 10.4 min to 854.3 minutes for KD90. Susceptibility was correlated with latitude, but not with longitude, history of insecticide use nor date of sampling. Combined with the number of bubonic plague cases, our results suggest that an immediate switch to an insecticide other than Deltamethrin is required for plague vector control in Madagascar. Topics: Animals; Flea Infestations; Insecticide Resistance; Insecticides; Lethal Dose 50; Madagascar; Nitriles; Plague; Pyrethrins; Rats; Rodent Diseases; Xenopsylla | 2014 |