clove has been researched along with Atherosclerosis* in 3 studies
3 other study(ies) available for clove and Atherosclerosis
Article | Year |
---|---|
Effect of supplementation of Rhodomyrtus tomentosa fruit juice in preventing hypercholesterolemia and atherosclerosis development in rats fed with high fat high cholesterol diet.
Cardiovascular diseases (CVDs) are the leading cause of death worldwide. Nutraceuticals, mainly based on natural products, have been proven to control the risk factors of CVDs effectively. Rhodomyrtus tomentosa is an underutilized fruit that is rich in phenolic compounds and has antioxidant activities. Scientific investigation was needed to verify the pharmacological properties of R. tomentosa fruit juice in Sprague-Dawley rats fed with high fat high cholesterol (HFHC) as antihypercholesterolemic and antiatherosclerotic agents. The experiments were carried out using male albino rats fed with HFHC diet for 75 days and at the same time orally supplemented with R. tomentosa fruit juice (RTFJ) in doses of 0.5, 1, and 2 g/kg body weight (BW) daily for 75 days. Simvastatin was used as a positive control. At the end of the experiment, the blood was collected, and the serum was assayed for total triglycerides (TG), total cholesterol (TC), low-density lipoprotein (LDL-C), and high-density lipoprotein (HDL-C). The histopathology of coronary and aorta arteries was observed under the light microscope. The results demonstrated that the supplementation of RTFJ significantly prevented the increase of total triglycerides, total cholesterol, low-density lipoprotein, and the decrease of high-density lipoprotein in serum. Supplementation of RTFJ also prevents atherosclerosis development by preventing the thickening of the blood vessel wall, deposition of lipid formation, and foam cells in the tunica intima of the aorta and coronary arteries. These findings suggested that supplementation of R. tomentosa fruit juice prevents hypercholesterolemia and atherosclerosis. Topics: Animals; Anticholesteremic Agents; Atherosclerosis; Cholesterol, Dietary; Diet, High-Fat; Dietary Supplements; Dose-Response Relationship, Drug; Fruit and Vegetable Juices; Hypercholesterolemia; Lipids; Male; Myrtaceae; Plant Extracts; Rats; Rats, Sprague-Dawley; Simvastatin | 2021 |
Leaf extracts of Campomanesia xanthocarpa positively regulates atherosclerotic-related protein expression.
Atherosclerosis is caused by a monocyte-mediated inflammatory process that, in turn, is stimulated by cytokines and adhesion molecules. Monocytes are then differentiated into macrophages, leading to the formation of arterial atherosclerotic plaques. Recently, guavirova leaf extracts from Campomanesia xanthocarpa (EG) have shown potential effects on the treatment of plaque formation by reducing cholesterol, LDL levels and serum oxidative stress. We evaluated the effect of EG on the viability of human monocytic and endothelial cell lines at three time points (24, 48 and 72 hours) and whether it can modulate the migration and in vitro expression of CD14, PECAM-1, ICAM-1, HLA-DR and CD105. Cell viability was affected only at higher concentrations and times. We observed decreased ICAM-1 expression in cells treated with 50 μg/ml EG and CD14 expression with IFN-γ and without IFN-γ. CD14 also decreased endothelial cell expression in the presence of IFN-γ and GE. We also found decreased expression of PECAM-1 when treated with EG and IFN-γ. In addition, EG-treated endothelial cells showed higher migration than the control group. Reduced expression of these markers and increased migration may lead to decreased cytokines, which may be contributing to decreased chronic inflammatory response during atherosclerosis and protecting endothelial integrity. Topics: Atherosclerosis; Cells, Cultured; Cytokines; Endothelial Cells; Humans; Myrtaceae; Plant Extracts | 2020 |
Study of oxidative and inflammatory parameters in LDLr-KO mice treated with a hypercholesterolemic diet: Comparison between the use of Campomanesia xanthocarpa and acetylsalicylic acid.
Atherosclerosis is an inflammatory disease that affects the arterial wall leading to myocardial, cerebral, and peripheral ischemic syndromes. The use of low doses of aspirin inhibits platelet aggregation and inflammation and prevents cardiovascular mortality. However, ASA may produce hemorrhagic events. Thus, several studies have sought new natural compounds to suppress platelet aggregation without causing serious adverse effects.. In this sense, this study aims to compare the effects of Campomanesia xanthocarpa plant extract with those of acetylsalicylic acid (ASA) on inflammatory parameters observed in homozygous mice knockout for the low-density lipoprotein receptor (LDLr-KO) treated with a hypercholesterolemic diet.. In this study, 28 male LDLr-KO mice were divided into three groups and fed a hypercholesterolemic diet for 4 weeks. Thereafter, the animals that received the hypercholesterolemic diet were treated for 5 days with (1) distilled water, (2) C. xanthocarpa extract, or (3) acetylsalicylic acid. The levels of inflammatory markers were assessed in the blood samples. The gastric tolerability of the animals after oral administration of the treatments was assessed through quantification of the lesions in the gastric mucosa.. The levels of proinflammatory cytokines IL-1, IL-6, TNF-α, and INF-γ were reduced to 19.2 ± 3%, 20.4 + 1.3%, 24.7 ± 1.2%, and 20.8 ± 1.7%, respectively, in the group treated with C. xanthocarpa, when compared to control group. Furthermore, treatment with plant extract significantly increased the levels of the anti-inflammatory cytokine IL-10 by 27.3 ± 5.9%, but ASA showed no significant effect on the same cytokines when compared to the control group, with the exception of IL-10, which presented an increase of 8.6 ± 3.5%. Treatments with C. xanthocarpa and ASA also caused significant reductions of 26.4 ± 3% and 38.4± 6% in the serum levels of oxLDL, respectively. However, only treatment with C. xanthocarpa reduced the levels of anti-oxLDL antibodies when compared with the control (25.8 ± 6%). In addition, the analyzed extract did not induce ulcerogenic activity, while ASA induced the formation of lesions.. In conclusion, treatment with C. xanthocarpa causes anti-inflammatory activity in hypercholesterolemic animals, with results superior to those obtained with the use of ASA. Topics: Animals; Aspirin; Atherosclerosis; Brazil; Hypercholesterolemia; Inflammation; Lipoproteins, LDL; Male; Mice; Mice, Knockout; Myrtaceae; Oxidative Stress; Plant Extracts; Plants, Medicinal | 2016 |