clocinnamox has been researched along with Pain* in 4 studies
4 other study(ies) available for clocinnamox and Pain
Article | Year |
---|---|
Curcumin induces peripheral antinociception by opioidergic and cannabinoidergic mechanism: Pharmacological evidence.
Curcumin is one of the compounds present in plants of the genus Curcuma sp., being very used not only as condiment but also with medicinal purposes. As an analgesic, papers highlight the efficacy of curcumin in the treatment of various types of pain.. In this study we evaluated the peripheral antinociceptive effect of curcumin and by which mechanisms this effect is induced.. The mice paw pressure test was used on animals which had increased pain sensitivity by intraplantar injection of carrageenan. All the drugs were administered in the right hind paw.. Curcumin was administered to the right hind paw animals induced antinociceptive effect. Non -selective antagonist of opioid receptors naloxone reverted the antinociceptive effect induced by curcumin. Selective antagonists for μ, δ and κ opioid receptors clocinnamox, naltrindole and nor- binaltorphimine, respectively, reverted the antinociceptive effect induced by curcumin. Bestatin, enkephalinases inhibitor that degrade peptides opioids, did not change the nociceptive response. Selective antagonists for CB. These results suggest that curcumin possibly peripheral antinociception induced by opioid and cannabinoid systems activation and possibly for endocannabinoids and opioids release. Topics: Analgesics; Animals; Anti-Inflammatory Agents, Non-Steroidal; Arachidonic Acids; Cannabinoid Receptor Agonists; Carrageenan; Cinnamates; Curcumin; Dose-Response Relationship, Drug; Endocannabinoids; Hyperalgesia; Male; Mice; Morphine Derivatives; Narcotic Antagonists; Pain; Polyunsaturated Alkamides; Receptors, Opioid | 2022 |
Peripheral antinociception induced by ketamine is mediated by the endogenous opioid system.
Ketamine is a drug largely used in clinical practice as an anesthetic and it can also be used as an analgesic to manage chronic pain symptoms. Despite its interactions with several other signaling systems such as cholinergic, serotoninergic and adrenergic, it is accepted that NMDA receptor antagonism is the main mechanism of action of this drug. In this study we investigated the actions of endogenous opioids in the mechanism of peripheral analgesia induced by ketamine. The nociceptive threshold for mechanical stimuli was measured in Swiss mice using the Randall and Selitto test. The drugs used in this study were administered via intraplantar injection. Our results demonstrated that non selective opioid receptor antagonism (naloxone), selective μ- and δ-opioid receptors antagonism (clocinamox and naltrindole, respectively) but not κ-opioid receptor antagonism (nor-binaltorphimine NORBNI) antagonized ketamine-induced peripheral antinociception in a dose-dependent manner. In addition, administration of aminopeptidase inhibitor bestatin significantly potentiated ketamine-induced peripheral antinociception. Ketamine injection in the right hind paw induced β-endorphine synthesis in the epithelial tissue of the hindpaw. Together these results indicate a role for μ- and δ-opioid receptors and for the endogenous opioid β-endorphine increased synthesis in ketamine-induced peripheral analgesia mechanism of action. Topics: Analgesics; Animals; Cinnamates; Dinoprostone; Ketamine; Male; Mice; Morphine Derivatives; Naloxone; Naltrexone; Narcotic Antagonists; Pain; Receptors, Opioid, delta; Receptors, Opioid, mu | 2019 |
Serotonin induces peripheral antinociception via the opioidergic system.
Studies conducted since 1969 have shown that the release of serotonin (5-HT) in the dorsal horn of the spinal cord contributes to opioid analgesia. In the present study, the participation of the opioidergic system in antinociceptive effect serotonin at the peripheral level was examined.. The paw pressure test was used with mice (Swiss, males from 35 g) which had increased pain sensitivity by intraplantar injection of PGE. The selective antagonists for mu, delta and kappa opioid receptors, clocinnamox clocinnamox (40 μg), naltrindole (60 μg) and nor-binaltorfimina (200 μg), respectively, inhibited the antinociceptive effect induced by serotonin. Additionally, bestatin (400 μg), an inhibitor of enkephalinases that degrade peptides opioids, enhanced the antinociceptive effect induced by serotonin (low dose of 62.5 ng).. These results suggest that serotonin possibly induce peripheral antinociception through the release of endogenous opioid peptides, possible from immune cells or keratinocytes. Topics: Analgesics; Animals; Cinnamates; Dinoprostone; Disease Models, Animal; Male; Mice; Morphine Derivatives; Naltrexone; Narcotic Antagonists; Opioid Peptides; Pain; Receptors, Opioid; Serotonin | 2018 |
Reversibility of opioid receptor occupancy of buprenorphine in vivo.
The slow association and incomplete dissociation of buprenorphine from opioid receptors observed in vitro have been suggested to reduce the accessibility of opioid receptors in vivo. If so, it might be expected that buprenorphine continues to occupy opioid receptors long after the antinociceptive activity has dissipated. To examine this hypothesis, buprenorphine (46.4 microg/kg i.v.) was administered to rats 1, 2, 4 or 8 h before isolation of their forebrain membranes and the maximal binding capacity (Bmax) for [3H]-[D-Ala2, N-methyl-Phe4-Gly5-ol]-enkephalin ([3H]DAMGO) was determined to measure the number of mu-opioid receptor binding sites remaining. Extent and duration of the reduction of Bmax by buprenorphine (ED50 11.2 microg/kg 1 h post-application) correlated with the antinociceptive activity in the rat tail flick (ED50 16.4 microg/kg i.v. 1 h post-application). At 8 h after administration there was still residual antinociception but no further attenuation of Bmax was detectable. Thus receptor occupancy by buprenorphine does not cause impairment of mu-opioid receptor accessibility beyond the duration of its antinociceptive activity. Therefore, no impairment of antinociception in the case of an opioid switch is to be expected. Topics: Acetic Acid; Analgesics, Opioid; Animals; Buprenorphine; Cinnamates; Dose-Response Relationship, Drug; Female; Injections, Intravenous; Kinetics; Models, Animal; Morphine; Morphine Derivatives; Narcotic Antagonists; Pain; Pain Measurement; Prosencephalon; Rats; Rats, Sprague-Dawley; Receptors, Opioid, mu | 2006 |