clay and Neoplasms

clay has been researched along with Neoplasms* in 17 studies

Reviews

3 review(s) available for clay and Neoplasms

ArticleYear
Layered Clay Minerals in Cancer Therapy: Recent Progress and Prospects.
    Small (Weinheim an der Bergstrasse, Germany), 2023, Volume: 19, Issue:34

    Cancer is one of the deadliest diseases, and current treatment regimens suffer from limited efficacy, nonspecific toxicity, and chemoresistance. With the advantages of good biocompatibility, large specific surface area, excellent cation exchange capacity, and easy availability, clay minerals have been receiving ever-increasing interests in cancer treatment. They can act as carriers to reduce the toxic side effects of chemotherapeutic drugs, and some of their own properties can kill cancer cells, etc. Compared with other morphologies clays, layered clay minerals (LCM) have attracted more and more attention due to adjustable interlayer spacing, easier ion exchange, and stronger adsorption capacity. In this review, the structure, classification, physicochemical properties, and functionalization methods of LCM are summarized. The state-of-the-art progress of LCM in antitumor therapy is systematically described, with emphasis on the application of montmorillonite, kaolinite, and vermiculite. Furthermore, the property-function relationships of LCM are comprehensively illustrated to reveal the design principles of clay-based antitumor systems. Finally, foreseeable challenges and outlook in this field are discussed.

    Topics: Adsorption; Aluminum Silicates; Bentonite; Clay; Kaolin; Minerals; Neoplasms

2023
Preclinical developments of natural-occurring halloysite clay nanotubes in cancer therapeutics.
    Advances in colloid and interface science, 2021, Volume: 291

    The natural world holds useful resources that can be exploited to design effective therapeutic approaches. Ready-to-use tubular nanoclays, such as halloysite clay nanotubes (HNTs), are widely available, cost-effective, and sustainable submicron crystalline materials that have been showing great potential towards chronic multifactorial and malignant diseases, standing out as a promising anticancer nanotherapeutic strategy. Currently, several preclinical studies have reported the application of HNTs in cancer research, diagnosis, monitoring, and therapeutics. This groundbreaking review highlights the preclinical knowledge hitherto collected concerning the application of HNTs towards cancer therapy. Despite their reproducibility issues, HNTs were used as nanoarchitectonic platforms for the delivery of conventional chemotherapeutic, natural-occurring, biopharmaceutical, and phototherapeutic anticancer agents in a wide range of in vitro and in vivo solid cancer models. Overall, in different types of cancer mice models, the intratumoral and intravenous administration of HNTs-based nanoplatforms induced tumor growth inhibition without causing significant toxic effects. Such evidence raises a relevant question: does the therapeutic benefit of the parenteral administration of HNTs in cancer outweigh their potential toxicological risk? To answer this question further long-term absorption-distribution-metabolism-excretion studies in healthy and cancer animal models need to be performed. In cancer therapeutics, HNTs are envisaged as promising platforms for cancer multi-agent therapy, enabling the combination of different therapeutic modalities. Furthermore, HNTs might constitute suitable nanotheranostic platforms. Nevertheless, to confirm the potential and safety of the application of HNTs as nanodelivery systems for cancer therapy, it is necessary to perform in-depth in vivo pharmacokinetics and pharmacodynamic studies to further the translation to clinical trials.

    Topics: Animals; Clay; Mice; Nanotubes; Neoplasms; Reproducibility of Results

2021
Kaolinite group minerals: Applications in cancer diagnosis and treatment.
    European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V, 2020, Volume: 154

    The clay minerals are characterized as important minerals due to their specific properties. One of the most important groups of the clay minerals is the kaolinite's group minerals due to their morphology, availability and range of potential applications. Halloysite and kaolinite are investigated here for their pharmaceutical applications and especially for their potential in cancer treatment. This review study is focusing on the potential applications of the kaolinite's group minerals in cancer diagnosis and monitoring, cancer treatment, the avoidance of metastasis, and the relief of cancer pains. Anticancer drug-loaded formulations based on these minerals show high potential for the treatment of various types of cancer as they have been shown to exhibit high anticancer activity in cancer cell lines and cancer animal models, high biocompatibility, low side effects, and high drug bioavailability.

    Topics: Animals; Antineoplastic Agents; Cell Line, Tumor; Clay; Cytotoxins; Humans; Kaolin; Minerals; Neoplasms; Treatment Outcome

2020

Other Studies

14 other study(ies) available for clay and Neoplasms

ArticleYear
Cu
    Journal of colloid and interface science, 2024, Volume: 655

    Copper-based Fenton-like agents have the ability to convert weakly oxidizing H

    Topics: Animals; Clay; Copper; Hydrogen Peroxide; Mice; Nanoparticles; Nanotubes; Neoplasms

2024
Development of chitosan/halloysite/graphitic‑carbon nitride nanovehicle for targeted delivery of quercetin to enhance its limitation in cancer therapy: An in vitro cytotoxicity against MCF-7 cells.
    International journal of biological macromolecules, 2023, Jan-31, Volume: 226

    Although quercetin (QC) has valuable advantages, its low water solubility and poor permeability have limited its utilization as an anticancer drug. In this study, hydrogel nanocomposite of chitosan (CS), halloysite (HNT), and graphitic‑carbon nitride (g-C3N4) was prepared and loaded by QC using a water in oil in water emulsification process to attain QC sustained-release. Using g-C3N4 in the HNT/CS hydrogel solution enhanced the entrapment effectiveness (EE %) by up to 86 %. The interactions between QC and nanoparticles caused the nanocomposite pH-responsive behavior that assists in minimizing the side effect of the anticancer agent by controlling the burst release of QC at neutral conditions. According to DLS analysis, the size of the QC-loaded nanovehicle was 454.65 nm, showing that nanoparticles are highly monodispersed, which also was approved by FE-SEM. Additionally, Zeta potential value for the fabricated drug-loaded nanocarrier is +55.23 mV displaying that nanoparticles have good stability. The hydrogel nanocomposite structure's completeness was shown by FTIR pattern, and quercetin was included into the designed delivery system based on XRD data. Besides, the drug release profile indicated that a targeted sustained-release and pH-sensitive release of anticancer drug with the 96-hour extended-release were noticed. In order to comprehend the process of QC release at pH 5.4 and 7.4, four kinetic models were employed to find the best-suited model according to the acquired release data. Finally, the MTT experiment revealed considerable cytotoxicity against breast cancer cells, MCF-7 cell line was experimented in vitro, for the CS/HNT/g-C3N4 targeted delivery system in comparison to QC as a free drug. According to the above description, the CS/HNT/g-C3N4 delivery platform is a unique pH-sensitive drug delivery system for anticancer purposes that improves loading as well as sustained-release of quercetin.

    Topics: Antineoplastic Agents; Chitosan; Clay; Delayed-Action Preparations; Drug Carriers; Drug Delivery Systems; Drug Liberation; Humans; Hydrogen-Ion Concentration; MCF-7 Cells; Nanoparticles; Neoplasms; Quercetin

2023
Clay nanosheets simultaneously intercalated and stabilized by PEGylated chitosan as drug delivery vehicles for cancer chemotherapy.
    Carbohydrate polymers, 2023, Feb-15, Volume: 302

    Montmorillonite (MMT) has been frequently utilized as drug vehicles due to its high specific surface area, excellent cation exchange capacity and biocompatibility. However, the significant flocculation of MMT under physiological condition restricted its application to drug delivery. To conquer this problem, the graft-type PEGylated chitosan (PEG-CS) adducts were synthesized as intercalator to stabilize MMT dispersion. Through electrostatic attraction between the chitosan and MMT, the PEG-CS adducts were adsorbed on MMT surfaces and intercalated into MMT. The resulting PEG-CS/MMT nanosheets possessed PEG-rich surfaces, thus showing outstanding dispersion in serum-containing environment. Moreover, the physicochemical characterization revealed that the increased mass ratio of PEG-CS to MMT led to the microstructure transition of PEG-CS/MMT nanosheets from multilayered to exfoliated structure. Interestingly, the PEG-CS/MMT nanosheets with mass ratio of 8.0 in freeze-dried state exhibited a hierarchical lamellar structure organized by the intercalated MMT bundles and unintercalated PEG-CS domains. Notably, the multilayered PEG-CS/MMT nanosheets showed the capability of loading doxorubicin (DOX) superior to the exfoliated counterparts. Importantly, the DOX@PEG-CS/MMT nanosheets endocytosed by TRAMP-C1 cells liberated the drug progressively within acidic organelles, thereby eliciting cell apoptosis. This work provides a new strategy of achieving the controllable dispersion stability of MMT nanoclays towards application potentials in drug delivery.

    Topics: Chitosan; Clay; Doxorubicin; Drug Delivery Systems; Humans; Neoplasms; Polyethylene Glycols

2023
Cell Membrane-Coated Halloysite Nanotubes for Target-Specific Nanocarrier for Cancer Phototherapy.
    Molecules (Basel, Switzerland), 2021, Jul-25, Volume: 26, Issue:15

    Naturally-occurring halloysite nanotubes (HNTs) have many advantages for constructing target-specific delivery of phototherapeutic agents. Here, HNTs were labeled with fluorescein isothiocyanate (FITC) and loaded with the type-II photosensitizer indocyanine green (ICG) for phototherapy. HNTs-FITC-ICG was structurally stable due to presence of HNTs as the nanocarrier and protective agent. The nanocarrier was further wrapped with red blood cell membrane (RBCM) to enhance the biocompatibility. The HNTs-FITC-ICG-RBCM nanocarrier show high cytocompatibility and hemocompatibility. Due to the photothermal effect of ICG, a significant temperature rising was achieved by irradiation of the nanocarrier using 808 nm laser. The photothermal temperature rising was used to kill the cancer cells effectively. The HNTs-FITC-ICG-RBCM nanocarrier was further linked with anti-EpCAM to endow it with targeting therapy performance against breast cancer, and the anti-EpCAM-conjugated nanocarrier exhibited significantly tumor-specific accumulation. The RBCM-coated and biocompatible HNTs nanocarrier is a promising candidate for target-specific therapy of cancer.

    Topics: Animals; Cell Membrane; Clay; Coated Materials, Biocompatible; Drug Carriers; Human Umbilical Vein Endothelial Cells; Humans; MCF-7 Cells; Nanotubes; Neoplasms; Photothermal Therapy; Rabbits

2021
Plasmonic photothermal release of docetaxel by gold nanoparticles incorporated onto halloysite nanotubes with conjugated 2D8-E3 antibodies for selective cancer therapy.
    Journal of nanobiotechnology, 2021, Aug-11, Volume: 19, Issue:1

    Applied nanomaterials in targeted drug delivery have received increased attention due to tangible advantages, including enhanced cell adhesion and internalization, controlled targeted release, convenient detection in the body, enhanced biodegradation, etc. Furthermore, conjugation of the biologically active ingredients with the drug-containing nanocarriers (nanobioconjugates) has realized impressive opportunities in targeted therapy. Among diverse nanostructures, halloysite nanotubes (NHTs) with a rolled multilayer structure offer great possibilities for drug encapsulation and controlled release. The presence of a strong hydrogen bond network between the rolled HNT layers enables the controlled release of the encapsulated drug molecules through the modulation of hydrogen bonding either in acidic conditions or at higher temperatures. The latter can be conveniently achieved through the photothermal effect via the incorporation of plasmonic nanoparticles.. The developed nanotherapeutic integrated natural halloysite nanotubes (HNTs) as a carrier; gold nanoparticles (AuNPs) for selective release; docetaxel (DTX) as a cytotoxic anticancer agent; human IgG1 sortilin 2D8-E3 monoclonal antibody (SORT) for selective targeting; and 3-chloropropyltrimethoxysilane as a linker for antibody attachment that also enhances the hydrophobicity of DTX@HNT/Au-SORT and minimizes DTX leaching in body's internal environment. HNTs efficiently store DTX at room temperature and release it at higher temperatures via disruption of interlayer hydrogen bonding. The role of the physical expansion and disruption of the interlayer hydrogen bonding in HNTs for the controlled DTX release has been studied by dynamic light scattering (DLS), electron microscopy (EM), and differential scanning calorimetry (DSC) at different pH conditions. HNT interlayer bond disruption has been confirmed to take place at a much lower temperature (44 °C) at low pH vs. 88 °C, at neutral pH thus enabling the effective drug release by DTX@HNT/Au-SORT through plasmonic photothermal therapy (PPTT) by light interaction with localized plasmon resonance (LSPR) of AuNPs incorporated into the HNT pores.. Selective ovarian tumor targeting was accomplished, demonstrating practical efficiency of the designed nanocomposite therapeutic, DTX@HNT/Au-SORT. The antitumor activity of DTX@HNT/Au-SORT (apoptosis of 90 ± 0.3%) was confirmed by in vitro experiments using a caov-4 (ATCC HTB76) cell line (sortilin expression > 70%) that was successfully targeted by the sortilin 2D8-E3 mAb, tagged on the DTX@HNT/Au.

    Topics: Antineoplastic Agents; Cell Line, Tumor; Clay; Docetaxel; Drug Carriers; Drug Delivery Systems; Drug Liberation; Female; Gold; Humans; Metal Nanoparticles; Nanocomposites; Nanotubes; Neoplasms; Ovarian Neoplasms; Particle Size

2021
The Development of Pemetrexed Diacid-Loaded Gelatin-Cloisite 30B (MMT) Nanocomposite for Improved Oral Efficacy Against Cancer: Characterization,
    Current drug delivery, 2020, Volume: 17, Issue:3

    The intention of this investigation was to develop Pemetrexed Diacid (PTX)-loaded gelatine-cloisite 30B (MMT) nanocomposite for the potential oral delivery of PTX and the. Gelatin/Cloisite 30 B (MMT) nanocomposites were prepared by blending gelatin with MMT in aqueous solution.. PTX was incorporated into the nanocomposite preparation. The nanocomposites were investigated by Fourier Transmission Infra Red Spectroscopy (FT-IR), Differential Scanning Calorimetry (DSC), Scanning Electron Microscope (SEM) X-Ray Diffraction (XRD) and Confocal Laser Microscopy (CLSM). FT-IR of nanocomposite showed the disappearance of all major peaks which corroborated the formation of nanocomposites. The nanocomposites were found to have a particle size of 121.9 ± 1.85 nm and zeta potential -12.1 ± 0.63 mV. DSC thermogram of drug loaded nanocomposites indicated peak at 117.165 oC and 205.816 oC, which clearly revealed that the drug has been incorporated into the nanocomposite because of cross-linking of cloisite 30 B and gelatin in the presence of glutaraldehyde.. SEM images of gelatin show a network like structure which disappears in the nanocomposite. The kinetics of the drug release was studied in order to ascertain the type of release mechanism. The drug release from nanocomposites was in a controlled manner, followed by first-order kinetics and the drug release mechanism was found to be of Fickian type.. Ex vivo gut permeation studies revealed 4 times enhancement in the permeation of drug present in the nanocomposite as compared to plain drug solution and were further affirmed by CLSM. Thus, gelatin/(MMT) nanocomposite could be promising for the oral delivery of PTX in cancer therapy and future prospects for the industrial pharmacy.

    Topics: Administration, Oral; Animals; Antineoplastic Agents; Clay; Drug Delivery Systems; Drug Liberation; Enterocytes; Gelatin; Intestinal Mucosa; Male; Nanocomposites; Neoplasms; Pemetrexed; Rats; Treatment Outcome

2020
Improved In vivo Effect of Chrysin as an Absorption Enhancer Via the Preparation of Ternary Solid Dispersion with Brij®L4 and Aminoclay.
    Current drug delivery, 2019, Volume: 16, Issue:1

    Chrysin is a strong inhibitor of breast cancer resistance protein (BCRP) but it is practically insoluble in water. Effective solubilization of chrysin is critical for its pharmaceutical application as an absorption enhancer via inhibition of BCRP-mediated drug efflux.. This study aimed to develop an effective oral formulation of chrysin to improve its in vivo effect as an absorption enhancer.. Solid dispersions (SDs) of chrysin were prepared with hydrophilic carriers having surface acting properties and a pH modulator. In vitro and in vivo characterizations were performed to select the optimal SDs of chrysin.. SDs with Brij®L4 and aminoclay was most effective in increasing the solubility of chrysin by 13-53 fold at varying drug-carrier ratios. Furthermore, SDs significantly improved the dissolution rate and extent of drug release. SDs (chrysin: Brij®L4: aminoclay=1:3:5) achieved approximately 60% and 83% drug release within 1 h and 8 h, respectively, in aqueous medium, while the dissolution of the untreated chrysin was less than 13%. XRD patterns indicated the amorphous state of chrysin in SDs. The SD formulation was effective in improving the bioavailability of topotecan, a BCRP substrate in rats. Following oral administration of topotecan with the SDs of chrysin, the Cmax and AUC of topotecan was enhanced by approximately 2.6- and 2-fold, respectively, while the untreated chrysin had no effect.. The SD formulation of chrysin with Brij®L4 and aminoclay appeared to be promising in improving the dissolution of chrysin and enhancing its in vivo effect as an absorption enhancer.

    Topics: Administration, Oral; Animals; Antineoplastic Combined Chemotherapy Protocols; ATP Binding Cassette Transporter, Subfamily G, Member 2; Biological Availability; Clay; Detergents; Drug Compounding; Drug Evaluation, Preclinical; Flavonoids; HT29 Cells; Humans; Hydrophobic and Hydrophilic Interactions; Intestinal Absorption; Male; Neoplasms; Polidocanol; Rats; Rats, Sprague-Dawley; Solubility; Topotecan; Water

2019
Enhancing cancer cell adhesion with clay nanoparticles for countering metastasis.
    Scientific reports, 2019, 04-11, Volume: 9, Issue:1

    Cancer metastasis results from the suppression of adhesion between cancer cells and the extracellular matrix, causing their migration from the primary tumor location and the subsequent formation of tumors in distant organs. This study demonstrates the potential use of nano-sized clay mineral particles to modulate adhesions between tumor cells and with the surrounding extracellular matrix. Atomic force microscopy studies of live cell cultures reveal a significant increase in adhesion between tumor cells and their environment after treatment with different types of electrically charged clay nanoparticles. The enhancement of adhesion among cancer cells was further confirmed through scratch type of wound healing assay studies. To provide insight into the adhesion mechanisms introduced by the clay nanoparticles, we performed a molecular-level computer simulation of cell adhesions in the presence and absence of the nanoparticles. Strong van der Waals and electrostatic attractions modelled in the molecular simulations result in an increase in the cohesive energy density of these environments when treated with clay crystallites. The increase in the cohesive energy density after the sorption of clay crystallites on cell-cell and cell-extracellular matrix complexes lends weight to our strategy of using clay nanoparticles for the restoration of adhesion among cancer cells and prevention of metastasis.

    Topics: Aluminum Silicates; Cell Adhesion; Clay; Computer Simulation; Extracellular Matrix; Humans; Nanoparticles; Neoplasm Metastasis; Neoplasms; Tumor Cells, Cultured

2019
pH and near-infrared active; chitosan-coated halloysite nanotubes loaded with curcumin-Au hybrid nanoparticles for cancer drug delivery.
    International journal of biological macromolecules, 2018, Volume: 112

    In this work, we propose biofriendly in-situ preparation method of Au NPs (hexagonal and rod-shape structures) in the lumen as well as the surface cage of biocompatible halloysite nanotubes (HNTs) using curcumin (CUR) as anticancer drug and subsequently coating with bio-adhesive chitosan (CS) as a polysaccharide. The formation of Au NPs and their interactions with CUR and CS exist in the HNTs has been characterized by FTIR, XRD, XPS, STEM techniques. Interestingly, Au NPs showed longitudinal plasmon resonance bands at 760 and 980 nm that indicate the near-infrared (NIR) responsive property of hybrid nanoparticles. Rod shape and hexagonal structures of Au NPs were produced as confirmed by TEM images. The loading efficiency of CUR was found as much as 12%. Importantly, more CUR release was achieved under acidic conditions (pH 5.5) than basic conditions (pH 7.4). The anticancer potential of HNT hybrid nanoparticles on MCF-7 cancer cells was studied and showed efficient anticancer activity under intracellular tumor cell environment (pH 5.5) than extracellular conditions (pH 7.4). Moreover, the developed HNT hybrid nanoparticles consisting of Au NPs (NIR responsive property) and pH-responsive CUR release could make it suitable for cancer cell-targeted drug delivery platform with NIR-imaging.

    Topics: Aluminum Silicates; Cell Line, Tumor; Cell Survival; Chitosan; Clay; Curcumin; Drug Delivery Systems; Drug Liberation; Gold; Humans; Hydrogen-Ion Concentration; Nanoparticles; Nanotubes; Neoplasms

2018
Simple fabrication of rough halloysite nanotubes coatings by thermal spraying for high performance tumor cells capture.
    Materials science & engineering. C, Materials for biological applications, 2018, Apr-01, Volume: 85

    Here, we reported a fast, low-cost, and effective fabrication method of large-area and rough halloysite nanotubes (HNTs) coatings by thermal spraying of HNTs ethanol dispersions. A uniform HNTs coating with high transparence is achieved with tailorable surface roughness and thickness. Compared with normal cells, the tumor cells can be captured effectively with high capture yield by the HNTs coatings (expect HeLa cells), which is attributed to the enhanced topographic interactions between HNTs coating and cancer cells. HNTs coating formed from 2.5% ethanol dispersions shows the highest tumor cells capture yeild (90%), which is related to the appropriate roughness and anti-EpCAM conjugation. The capture yield of HNTs coating towards MCF-7 cells can be further improved to 93% within 2h under dynamic shear using a peristaltic pump. The capture yield increases with the incubation time, and the flow rate with 1.25mL/min leads to the maximum capture yield. The HNTs coatings are also effective for capture of tumor cells spiked in artificial blood samples and blood samples from patients with metastatic breast cancer. More than 90% targeted MCF-7 cells and very small amounts of white blood cells are captured by the anti-EpCAM conjugated HNTs coatings from a blood sample. HNTs are further loaded anticancer drug doxorubicin (DOX) and then thermally sprayed into coatings. The MCF-7 cells captured on DOX loaded HNTs coating display significant membrane rupture characteristic and only 3% cell viability after 16h. The high capture efficiency of tumor cells by HNTs coating fabricated by the thermal spraying method makes them show promising applications in clinical circulating tumor cells capture for early diagnosis and monitoring of cancer patients. The high killing ability of the DOX loaded HNTs coating can also be designed as an implantable therapeutic device for preventing tumor metastasis.

    Topics: Adult; Aged; Aged, 80 and over; Aluminum Silicates; Animals; Cell Death; Cell Line; Clay; Coated Materials, Biocompatible; Doxorubicin; Humans; Mice; Microscopy, Atomic Force; Middle Aged; Nanotubes; Neoplasms; Temperature

2018
PEG-PE/clay composite carriers for doxorubicin: Effect of composite structure on release, cell interaction and cytotoxicity.
    Acta biomaterialia, 2017, Volume: 55

    A novel drug delivery system for doxorubicin (DOX), based on organic-inorganic composites was developed. DOX was incorporated in micelles (M-DOX) of polyethylene glycol-phosphatidylethanolamine (PEG-PE) which in turn were adsorbed by the clay, montmorillonite (MMT). The nano-structures of the PEG-PE/MMT composites of LOW and HIGH polymer loadings were characterized by XRD, TGA, FTIR, size (DLS) and zeta measurements. These measurements suggest that for the LOW composite a single layer of polymer intercalates in the clay platelets and the polymer only partially covers the external surface, while for the HIGH composite two layers of polymer intercalate and a bilayer may form on the external surface. These nanostructures have a direct effect on formulation stability and on the rate of DOX release. The release rate was reversely correlated with the degree of DOX interaction with the clay and followed the sequence: M-DOX>HIGH formulation>LOW formulation>DOX/MMT. Despite the slower release from the HIGH formulation, its cytotoxicity effect on sensitive cells was as high as the "free" DOX. Surprisingly, the LOW formulation, with the slowest release, demonstrated the highest cytotoxicity in the case of Adriamycin (ADR) resistant cells. Confocal microscopy images and association tests provided an insight into the contribution of formulation-cell interactions vs. the contribution of DOX release rate. Internalization of the formulations was suggested as a mechanism that increases DOX efficiency, particularly in the ADR resistant cell line. The employment of organic-inorganic hybrid materials as drug delivery systems, has not reached its full potential, however, its functionality as an efficient tunable release system was demonstrated.. DOX PEG-PE/clay formulations were design as an efficient drug delivery system. The main aim was to develop PEG-PE/clay formulations of different structures based on various PEG-PE/clay ratios in order to achieve tunable release rates, to control the external surface characteristics and formulation stability. The formulations showed significantly higher toxicity in comparison to "free" DOX, explained by formulation internalization. For each cell line tested, sensitive and ADR resistant, a different formulation structure was found most efficient. The potential of PEG-PE/clay-DOX formulations to improve DOX administration efficacy was demonstrated and should be further explored and implemented for other cancer drugs and cells.

    Topics: Aluminum Silicates; Bentonite; Cell Line, Tumor; Clay; Cytotoxins; Doxorubicin; Drug Carriers; Humans; Neoplasms; Polyethylene Glycols

2017
Stripe-like Clay Nanotubes Patterns in Glass Capillary Tubes for Capture of Tumor Cells.
    ACS applied materials & interfaces, 2016, Volume: 8, Issue:12

    Here, we used capillary tubes to evaporate an aqueous dispersion of halloysite nanotubes (HNTs) in a controlled manner to prepare a patterned surface with ordered alignment of the nanotubes . Sodium polystyrenesulfonate (PSS) was added to improve the surface charges of the tubes. An increased negative charge of HNTs is realized by PSS coating (from -26.1 mV to -52.2 mV). When the HNTs aqueous dispersion concentration is higher than 10%, liquid crystal phenomenon of the dispersion is found. A typical shear flow behavior and decreased viscosity upon shear is found when HNTs dispersions with concentrations higher than 10%. Upon drying the HNTs aqueous dispersion in capillary tubes, a regular pattern is formed in the wall of the tube. The width and spacing of the bands increase with HNTs dispersion concentration and decrease with the drying temperature for a given initial concentration. Morphology results show that an ordered alignment of HNTs is found especially for the sample of 10%. The patterned surface can be used as a model for preparing PDMS molding with regular micro-/nanostructure. Also, the HNTs rough surfaces can provide much higher tumor cell capture efficiency compared to blank glass surfaces. The HNTs ordered surfaces provide promising application for biomedical areas such as biosensors.

    Topics: Aluminum Silicates; Cell Separation; Clay; Humans; Nanotubes; Neoplasms; Polyanetholesulfonate

2016
Anti-inflammatory, anti-bacterial, and cytotoxic activity of fibrous clays.
    Colloids and surfaces. B, Biointerfaces, 2015, May-01, Volume: 129

    Produced worldwide at 1.2m tons per year, fibrous clays are used in the production of pet litter, animal feed stuff to roof parcels, construction and rheological additives, and other applications needing to replace long-fiber length asbestos. To the authors' knowledge, however, information on the beneficial effects of fibrous clays on health remains scarce. This paper reports on the anti-inflammatory, anti-bacterial, and cytotoxic activity by sepiolite (Vallecas, Spain) and palygorskite (Torrejon El Rubio, Spain). The anti-inflammatory activity was determined using the 12-O-tetradecanoylphorbol-13-acetate (TPA) and myeloperoxidase (MPO) methods. Histological cuts were obtained for quantifying leukocytes found in the epidermis. Palygorkite and sepiolite caused edema inhibition and migration of neutrophils ca. 68.64 and 45.54%, and 80 and 65%, respectively. Fibrous clays yielded high rates of infiltration, explained by cleavage of polysomes and exposure of silanol groups. Also, fibrous clays showed high inhibition of myeloperoxidase contents shortly after exposure, but decreased sharply afterwards. In contrast, tubular clays caused an increasing inhibition of myeloperoxidase with time. Thus, clay structure restricted the kinetics and mechanism of myeloperoxidase inhibition. Fibrous clays were screened in vitro against human cancer cell lines. Cytotoxicity was determined using the protein-binding dye sulforhodamine B (SRB). Exposing cancer human cells to sepiolite or palygorskite showed growth inhibition varying with cell line. This study shows that fibrous clays served as an effective anti-inflammatory, limited by chemical transfer and cellular-level signals responding exclusively to an early exposure to clay, and cell viability decreasing significantly only after exposure to high concentrations of sepiolite.

    Topics: Aluminum Silicates; Animals; Antacids; Anti-Bacterial Agents; Anti-Inflammatory Agents; Antidotes; Antineoplastic Agents; Cell Survival; Clay; Edema; Humans; Kinetics; Macrophages; Magnesium Compounds; Magnesium Silicates; Male; Mice; Neoplasms; Neutrophils; Peroxidase; Rats; Rats, Wistar; Silicon Compounds; Tetradecanoylphorbol Acetate

2015
Rapid isolation of viable circulating tumor cells from patient blood samples.
    Journal of visualized experiments : JoVE, 2012, Jun-15, Issue:64

    Circulating tumor cells (CTC) are cells that disseminate from a primary tumor throughout the circulatory system and that can ultimately form secondary tumors at distant sites. CTC count can be used to follow disease progression based on the correlation between CTC concentration in blood and disease severity. As a treatment tool, CTC could be studied in the laboratory to develop personalized therapies. To this end, CTC isolation must cause no cellular damage, and contamination by other cell types, particularly leukocytes, must be avoided as much as possible. Many of the current techniques, including the sole FDA-approved device for CTC enumeration, destroy CTC as part of the isolation process (for more information see Ref. 2). A microfluidic device to capture viable CTC is described, consisting of a surface functionalized with E-selectin glycoprotein in addition to antibodies against epithelial markers. To enhance device performance a nanoparticle coating was applied consisting of halloysite nanotubes, an aluminosilicate nanoparticle harvested from clay. The E-selectin molecules provide a means to capture fast moving CTC that are pumped through the device, lending an advantage over alternative microfluidic devices wherein longer processing times are necessary to provide target cells with sufficient time to interact with a surface. The antibodies to epithelial targets provide CTC-specificity to the device, as well as provide a readily adjustable parameter to tune isolation. Finally, the halloysite nanotube coating allows significantly enhanced isolation compared to other techniques by helping to capture fast moving cells, providing increased surface area for protein adsorption, and repelling contaminating leukocytes. This device is produced by a straightforward technique using off-the-shelf materials, and has been successfully used to capture cancer cells from the blood of metastatic cancer patients. Captured cells are maintained for up to 15 days in culture following isolation, and these samples typically consist of >50% viable primary cancer cells from each patient. This device has been used to capture viable CTC from both diluted whole blood and buffy coat samples. Ultimately, we present a technique with functionality in a clinical setting to develop personalized cancer therapies.

    Topics: Aluminum Silicates; Cell Separation; Clay; E-Selectin; Humans; Nanotubes; Neoplasms; Neoplastic Cells, Circulating

2012