clay has been researched along with Inflammation* in 3 studies
3 other study(ies) available for clay and Inflammation
Article | Year |
---|---|
Natural and ion-exchanged illite clays reduce bacterial burden and inflammation in cutaneous meticillin-resistant Staphylococcus aureus infections in mice.
Discoveries associated with antibacterial activity of hydrated clays necessitate assessments of in vivo efficacy, practical use and safety. Surface properties of clays can lead to variations in the composition and abundance of bound compounds or ions, thus affecting antibacterial activity. Since exchangeable metal ions released from the clay surface are responsible for in vitro antibacterial activity, we evaluated the in vivo antibacterial efficacy of four natural clays (one illite clay, two montmorillonite clays and one kaolinite clay) and three ion-exchanged, antibacterial clays against superficial, cutaneous meticillin-resistant Staphylococcus aureus (MRSA) infections in mice. Superficial, cutaneous wounds on the back of SKH1-Elite mice were generated and subsequently infected with MRSA. Following twice daily applications of a hydrated clay poultice to infected wounds for 7 days, we observed significant differences in the in vivo antibacterial efficacy between different types of clays. The natural and ion-exchanged illite clays performed best, as measured by bacterial load, inflammatory response and gross wound morphology with significant decreases in bacterial viability and dermatitis. Topical application of kaolinite clay was the least effective, resulting in the lowest decrease in bacterial load and exhibiting severe dermatitis. These data suggest that specific types of clays may offer a complementary and integrative strategy for topically treating MRSA and other cutaneous infections. However, since natural clays exhibit in vitro antibacterial variability and vary vastly in surface chemistries, adsorptive/absorptive characteristics and structural composition, the properties and characteristics of illite clays could aid in the development of standardized and customized aluminosilicates for topical infections. Topics: Aluminum Silicates; Animals; Anti-Bacterial Agents; Bacterial Load; Chemical Phenomena; Clay; Disease Models, Animal; Drug Resistance, Multiple, Bacterial; Female; Inflammation; Methicillin-Resistant Staphylococcus aureus; Mice; Minerals; Skin Diseases, Bacterial; Wound Infection | 2016 |
In-vivo study of genotoxic and inflammatory effects of the organo-modified Montmorillonite Cloisite® 30B.
Because of the increasing use of clays and organoclays in industrial applications it is of importance to consider the toxicity of these materials. Recently it was reported that the commercially available Montmorillonite clay, Cloisite(®) 30B, which is surface-modified by organic quaternary ammonium compounds, was genotoxic in vitro. In the present study the in-vivo genotoxic and inflammatory potential of Cloisite(®) 30B was investigated as a follow-up of the in-vitro studies. Wistar rats were exposed to Cloisite(®) 30B twice 24h apart by oral gavage, at doses ranging from 250 to 1000 mg/kg body weight [indicate duration of treatment; Ed.]. There was no induction of DNA strand-breaks in colon, liver and kidney cells and there was no increase in inflammatory cytokine markers in blood-plasma samples. In order to verify the possible absorption of Cloisite(®) 30B from the gastrointestinal tract, inductively coupled plasma mass-spectrometry (ICP-MS) analysis was performed on samples of liver, kidney and faeces, with aluminium as a tracer element characteristic to clay. The results showed that aluminium could be detected in faeces, but not in the liver or kidneys. This indicated that there was no systemic exposure to clay particles from Cloisite(®) 30B. Detection and identification of free quaternary ammonium modifier in the highest dose of Cloisite(®) 30B was carried out by high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF-MS). This analysis revealed a mixture of three quaternary ammonium analogues. The detected concentration of the organomodifier corresponded to an exposure of rats to about 5mg quaternary ammonium analogues/kg body weight. Topics: Aluminum Silicates; Animals; Bentonite; Biomarkers; Clay; Colon; Comet Assay; Cytokines; DNA Damage; Dose-Response Relationship, Drug; Female; Inflammation; Kidney; Liver; Male; Quaternary Ammonium Compounds; Rats; Rats, Wistar | 2014 |
In vitro toxicological assessment of clays for their use in food packaging applications.
Montmorillonite based clays have a wide range of applications that are going to contribute to increase human exposure to these materials. One of the most promising uses of clays is the development of reinforced food contact materials that results in nanocomposites with improved barrier properties. Different organoclays have been developed introducing modifiers in the natural clay which is commercially available. However, the toxicological aspects of these materials have been scarcely studied so far. In the present study, the cytotoxic effects of a non-modified clay (Cloisite Na+) and an organoclay (Cloisite 30B) have been investigated in the hepatic cell line HepG2. Only Cloisite 30B showed cytotoxicity. In order to elucidate the toxic mechanisms underlying these effects, apoptosis, inflammation, oxidative stress and genotoxicity biomarkers were assayed. Moreover, a morphology study with light and electron microscopy was performed. Results showed genotoxic effects and glutathione decrease. The most relevant ultraestructural alterations observed were mitochondrial degeneration, dilated endomembrane systems, heterophagosomes formation, fat droplets appearance and presence of nuclear lipid inclusions. Cloisite 30B, therefore, induces toxic effects in HepG2 cells. Further research is needed to assess the risk of this clay on the human health. Topics: Aluminum Silicates; Apoptosis; Bentonite; Caspase 3; Caspase 7; Clay; Comet Assay; Food Packaging; Glutathione; Hep G2 Cells; Humans; Inflammation; Interleukin-6; Microscopy, Electron; Mutagenicity Tests; Oxidative Stress; Reactive Oxygen Species | 2013 |