clay has been researched along with Bacterial-Infections* in 2 studies
2 other study(ies) available for clay and Bacterial-Infections
Article | Year |
---|---|
Antibacterial activity of reduced iron clay against pathogenic bacteria associated with wound infections.
Clay is a substance historically utilized by indigenous cultures for the treatment of superficial wound infections. This study evaluated the effects of a recently identified clay - OMT Blue Clay - against staphylococci, streptococci, Enterobacteriaceae and non-fermenting Gram-negative bacilli. The clay and its aqueous leachate were evaluated against the bacteria in biofilm and planktonic states. Time-kill studies were used to assess planktonic activity. Biofilms on medical-grade Teflon discs were treated with a hydrated clay suspension or leachate. For the planktonic studies, clay and leachate exhibited bactericidal activity against all strains tested, with the exception of leachate against Staphylococcus aureus IDRL-6169 and USA300. All strains treated with clay suspension and leachate resulted in statistically significant biofilm population reductions compared with controls, except S. aureus IDRL-6169 and USA300 (P ≤ 0.05). OMT Blue Clay and its aqueous leachate exhibited bactericidal activity against a range of human pathogens in the planktonic and biofilm states. Topics: Anti-Bacterial Agents; Bacterial Infections; Biofilms; Clay; Gram-Negative Bacteria; Gram-Positive Bacteria; Humans; Microbial Viability; Wound Infection | 2018 |
Poly(L-lactide)/halloysite nanotube electrospun mats as dual-drug delivery systems and their therapeutic efficacy in infected full-thickness burns.
In this study, poly(L-lactide) (PLLA)/halloysite nanotube (HNT) electrospun mats were prepared as a dual-drug delivery system. HNTs were used to encapsulate polymyxin B sulphate (a hydrophilic drug). Dexamethasone (a hydrophobic drug) was directly dissolved in the PLLA solution. The drug-loaded HNTs with optimised encapsulation efficiency were then mixed with the PLLA solution for subsequent electrospinning to form composite dual-drug-loaded fibre mats. The structure, morphology, degradability and mechanical properties of the electrospun composite mats were characterised in detail. The results showed that the HNTs were uniformly distributed in the composite PLLA mats. The HNTs content in the mats could change the morphology and average diameter of the electrospun fibres. The HNTs improved both the tensile strength of the PLLA electrospun mats and their degradation ratio. The drug-release kinetics of the electrospun mats were investigated using ultraviolet-visible spectrophotometry. The HNTs/PLLA ratio could be varied to adjust the release of polymyxin B sulphate and dexamethasone. The antibacterial activity in vitro of the mats was evaluated using agar diffusion and turbidimetry tests, which indicated the antibacterial efficacy of the dual-drug delivery system against Gram-positive and -negative bacteria. Healing in vivo of infected full-thickness burns and infected wounds was investigated by macroscopic observation, histological observation and immunohistochemical staining. The results indicated that the electrospun mats were capable of co-loading and co-delivering hydrophilic and hydrophobic drugs, and could potentially be used as novel antibacterial wound dressings. Topics: Aluminum Silicates; Animals; Anti-Bacterial Agents; Anti-Inflammatory Agents; Bacteria; Bacterial Infections; Burns; Clay; Dexamethasone; Drug Delivery Systems; Male; Nanotubes; Polyesters; Polymyxin B; Rats, Sprague-Dawley | 2015 |