clay has been researched along with Acanthamoeba-Keratitis* in 2 studies
2 other study(ies) available for clay and Acanthamoeba-Keratitis
Article | Year |
---|---|
A novel montmorillonite clay-cetylpyridinium chloride complex as a potential antiamoebic composite material in contact lenses disinfection.
Acanthamoeba keratitis is a painful, sight-threatening infection. It is commonly associated with the use of contact lens. Several lines of evidence suggest inadequate contact lens solutions especially against the cyst forms of pathogenic Acanthamoeba, indicating the need to develop effective disinfectants.. In this work, the application and assessment of montmorillonite clay (Mt-clay), cetylpyridinium chloride (CPC) and cetylpyridinium chloride-montmorillonite clay complex (CPC-Mt) against keratitis-causing A. castellanii belonging to the T4 genotype was studied.. Adhesion to human cells and amoeba-mediated cytopathogenicity assays were conducted to determine the impact of Mt-clay, CPC and CPC-Mt complex on amoeba-mediated binding and host cell death. Furthermore, assays were also performed to determine inhibitory effects of Mt-clay, CPC and CPC-Mt complex on encystment and excystment. In addition, the cytotoxicity of Mt-clay, CPC and CPC-Mt complex against human cells was examined.. The results revealed that CPC and CPC-Mt complex presented significant antiamoebic effects against A. castellanii at microgram dose. Also, the CPC and CPC-Mt complex inhibited amoebae binding to host cells. Furthermore, CPC and CPC-Mt complex, were found to inhibit the encystment and excystment processes. Finally, CPC and CPC-Mt complex showed minimal host cell cytotoxicity. These results show that CPC and CPC-Mt complex exhibit potent anti-acanthamoebic properties.. Given the ease of usage, safety, cost-effectiveness and long-term stability, CPC and CPC-Mt complex can prove to be an excellent choice in the rational development of contact-lens disinfectants to eradicate pathogenic Acanthamoeba effectively. Topics: Acanthamoeba castellanii; Acanthamoeba Keratitis; Bentonite; Cetylpyridinium; Clay; Contact Lens Solutions; Contact Lenses; Disinfection; Humans | 2022 |
Cationic Surfactant-Natural Clay Complex as a Novel Agent Against Acanthamoeba castellanii Belonging to the T4 Genotype.
Acanthamoeba is a protozoan pathogen that is widely distributed in the environment. Given the opportunity, it can cause a serious eye infection known as Acanthamoeba keratitis as well as a fatal brain infection known as granulomatous amoebic encephalitis. Inappropriate use of contact lenses can contribute to contracting Acanthamoeba keratitis, and contact lens disinfectants are not always effective in eradicating Acanthamoeba. Therefore, there is a need to develop novel antimicrobial agents with efficient antiamoebic properties.. In this study, we tested octadecyltrimethylammonium (ODTMA)-clay (montmorillonite) complex as a novel antiamoebic agent.. Using A. castellanii belonging to the T4 genotype of keratitis origin, amobicidal assays were performed to determine the effects of ODTMA-cay complex on the viability of parasites at various concentrations ranging from 10 to 100 μg. Adhesion and cytopathogenicity assays were performed to investigate ODTMA effects on A. castellanii-mediated binding and damage to human cells. Encystation and excystation assays were conducted to establish ODTMA-mediated inhibitory effects against the cyst stage of A. castellanii.. Using cell survival assays, the results revealed that ODTMA-clay complex exhibited amobicidal activity against keratitis-causing A. castellanii in a dose-dependent manner. Pretreatment of A. castellanii with ODTMA-clay complex inhibited parasite adhesion to as well as parasite-mediated human cell damage. Using encystation and excystation assays, it was revealed that ODTMA-clay complex inhibited A. castellanii cysts at 100 μg (P<0.05).. To the best of our knowledge, for the first time, it was shown that ODTMA-clay complex exhibited anti-Acanthamoebic activities. The possibility of adding ODTMA-clay in a contact lens cleaning solution to formulate effective disinfectants is discussed further. Topics: Acanthamoeba castellanii; Acanthamoeba Keratitis; Clay; Genotype; Humans; Surface-Active Agents | 2021 |