clamikalant and Arrhythmias--Cardiac

clamikalant has been researched along with Arrhythmias--Cardiac* in 9 studies

Reviews

2 review(s) available for clamikalant and Arrhythmias--Cardiac

ArticleYear
Recent developments in the biology and medicinal chemistry of potassium channel modulators: update from a decade of progress.
    Journal of medicinal chemistry, 2001, May-24, Volume: 44, Issue:11

    Topics: Adenosine Triphosphate; Angina Pectoris; Arrhythmias, Cardiac; Asthma; Calcium; Ion Channel Gating; Myocardial Ischemia; Potassium Channel Blockers; Potassium Channels; Urinary Incontinence

2001
[Acute myocardial ischemia and ventricular arrhythmias in the pathogenesis of sudden cardiac death in coronary disease].
    Zeitschrift fur Kardiologie, 2000, Volume: 89 Suppl 3

    There is increasing evidence for a fatal interaction of myocardial ischemia, ventricular arrhythmias and sudden cardiac death in some patients with coronary artery disease. Evidence comes from autopsy studies, from the evaluation of patients who survived an episode of sudden cardiac death, from follow-up data of these patients either treated or not by revascularization therapy and/or an implantable cardioverter-defibrillator and indicate that reducing the individual ischemic burden will be beneficial to reduce the incidence of sudden cardiac death. Studies in patients with stable and especially with unstable angina using Holter monitoring could demonstrate that there is a close and causal relationship between myocardial ischemia inducing or aggravating life-threatening ventricular arrhythmias and sudden cardiac death particularly in patients with unstable and postinfarction status. This review summarizes some of our clinical knowledge on this topic and indicates that preventive strategies for myocardial ischemia are the antiarrhythmic treatment of choice in patients with severe coronary artery disease and patients with evidence or at risk for ischemic proarrhythmia.

    Topics: Animals; Anti-Arrhythmia Agents; Arrhythmias, Cardiac; Atrial Fibrillation; Autopsy; Blood Coagulation; Coronary Disease; Death, Sudden, Cardiac; Defibrillators, Implantable; Electrocardiography; Humans; Ligation; Male; Middle Aged; Multivariate Analysis; Myocardial Ischemia; Myocardial Revascularization; Potassium Channel Blockers; Risk; Risk Factors; Sulfonamides; Tachycardia, Ventricular; Thiourea; Time Factors

2000

Other Studies

7 other study(ies) available for clamikalant and Arrhythmias--Cardiac

ArticleYear
Is the sarcolemmal or mitochondrial K(ATP) channel activation important in the antiarrhythmic and cardioprotective effects during acute ischemia/reperfusion in the intact anesthetized rabbit model?
    Life sciences, 2005, Jul-29, Volume: 77, Issue:11

    The relative contributions of cardiomyocyte sarcolemmal ATP-sensitive K(+) (K(ATP)) and mitochondrial K(ATP) channels in the cardioprotection and antiarrhythmic activity induced by K(ATP) channel openers remain obscure, though the mitochondrial K(ATP) channels have been proposed to be involved as a subcellular mediator in cardioprotection afforded by ischemic preconditioning. In the present study, we sought to investigate the effects of administration of ATP-sensitive K(+) channel (K(ATP)) openers (nicorandil and minoxidil), a specific mitochondrial K(ATP) channel blocker (5-hydroxydecanoate (5-HD)) and a specific sarcolemmal K(ATP) channel blocker (HMR 1883; (1-[5-[2-(5-chloro-o-anisamido)ethyl]-2-methoxyphenyl]sulfonyl-3-methylthiourea) prior to coronary occlusion as well as prior to post-ischemic reperfusion on survival rate, ischemia-induced and reperfusion-induced arrhythmias and myocardial infarct size in anesthetized albino rabbits. The thorax was opened in the left 4th intercostal space and after pericardiotomy the heart was exposed. In Group I (n=88), occlusion of the left main coronary artery and hence, myocardial ischemia-induced arrhythmias was achieved by tightening a previously placed loose silk ligature for 30 min. In Group II (n=206), arrhythmias were induced by reperfusion following a 20-min ligation of the left main coronary artery. Both in Group I and Group II, intravenous (i.v.) administration of nicorandil (0.47 mg/kg), minoxidil (0.5 mg/kg), HMR 1883 (3 mg/kg)/nicorandil and HMR 1883 (3 mg/kg)/minoxidil before coronary artery occlusion increased survival rate (86%, 75%, 75% and 86% vs. 55% in the control subgroup in Group I; 75%, 67%, 67% and 75% vs. 46% in the control subgroup in Group II), significantly decreased the incidence and severity of life-threatening arrhythmias. In Group II, i.v. administration of nicorandil and minoxidil before coronary artery occlusion significantly decreased myocardial infarct size. However, i.v. administration of nicorandil or minoxidil before reperfusion did neither increase survival rate nor confer any antiarrhythmic or cardioprotective effects. The antiarrhythmic and cardioprotective effects of both nicorandil and minoxidil were abolished by pretreating the rabbits with 5-HD (5 mg/kg, i.v. bolus), a selective mitochondrial K(ATP) channel blocker but not by HMR 1883 (3 mg/kg). In the present study, higher levels of malondialdehyde (MDA) and lower levels of reduced glutathione (GSH) and superoxide di

    Topics: Anesthesia; Animals; Anti-Arrhythmia Agents; Antioxidants; Arrhythmias, Cardiac; ATP-Binding Cassette Transporters; Blood Gas Analysis; Cardiotonic Agents; Decanoic Acids; Electrocardiography; Glutathione; Hemodynamics; Hydroxy Acids; KATP Channels; Malondialdehyde; Minoxidil; Mitochondria, Heart; Myocardial Reperfusion Injury; Myocardium; Nicorandil; Oxidative Stress; Potassium Channel Blockers; Potassium Channels, Inwardly Rectifying; Rabbits; Sarcolemma; Sulfonamides; Superoxide Dismutase; Survival; Thiourea; Vasodilator Agents

2005
Selective mitochondrial KATP channel activation by nicorandil and 3-pyridyl pinacidil results in antiarrhythmic effect in an anesthetized rabbit model of myocardial ischemia/reperfusion.
    Methods and findings in experimental and clinical pharmacology, 2003, Volume: 25, Issue:2

    The roles of cardiomyocyte sarcolemmal ATP-sensitive K+ (KATP) and mitochondrial KATP channels in cardioprotection and antiarrhythmic activity induced by KATP channel openers remain obscure. However, it has been suggested that the mitochondrial KATP channels are involved as a subcellular mediator in cardioprotection afforded by ischemic preconditioning. In the present study, we investigated the effects of the administration of non-hypotensive doses of ATP-sensitive K+ channel (KATP) openers (nicorandil and 3-pyridyl pinacidil), a specific mitochondrial KATP channel blocker (5-hydroxydecanoate) and a specific sarcolemmal KATP channel blocker (HMR 1883; 1-[5-[2-(5-chloro-o-anisamido)ethyl]-2-methoxyphenyl]sulfonyl-3- methylthiourea) prior to and during coronary occlusion, as well as prior to and during post-ischemic reperfusion, on survival rate, ischemia-induced and reperfusion-induced arrhythmias and myocardial infarct size in anesthetized albino rabbits. The thorax was opened in the left 4th intercostal space and after pericardiotomy the heart was exposed. In Group I (n = 80), occlusion of the left main coronary artery and hence, myocardial ischemia-induced arrhythmias were achieved by tightening a previously placed loose silk ligature for 30 min. In Group II (n = 186), arrhythmias were induced by reperfusion following a 20 min ligation of the left main coronary artery. In both Group I and Group II, early intravenous infusion of nicorandil (100 micrograms/kg bolus + 10 micrograms/kg/min), 3-pyridyl pinacidil (3.0 micrograms/kg bolus + 1.0 microgram/kg/min), HMR 1883 (3 mg/kg)/nicorandil and HMR 1883 (3 mg/kg)/3-pyridyl pinacidil, just prior to and during ischemia, increased survival rate (75%, 67%, 86% and 75% vs. 60% in the control subgroup in Group I; 67%, 75%, 75% and 67% vs. 43% in the control subgroup in Group II), significantly decreased the incidence and severity of life-threatening arrhythmias and significantly decreased myocardial infarct size. However, late intravenous administration of nicorandil or 3-pyridyl pinacidil at the onset of and during reperfusion did not increase survival rate nor confer any antiarrhythmic or cardioprotective effects. The antiarrhythmic and cardioprotective effects of both nicorandil and 3-pyridyl pinacidil were abolished by pretreating the rabbits with 5-hydroxydecanoate (5 mg/kg, i.v. bolus), a selective mitochondrial KATP channel blocker, but not by pretreatment with HMR 1883 (3 mg/kg). In the present study, high

    Topics: Animals; Anti-Arrhythmia Agents; Antioxidants; Arrhythmias, Cardiac; Blood Pressure; Decanoic Acids; Electrocardiography; Heart Rate; Hydroxy Acids; Ion Channel Gating; Male; Membrane Proteins; Myocardial Ischemia; Myocardial Reperfusion Injury; Myocardium; Nicorandil; Oxidative Stress; Pinacidil; Potassium Channel Blockers; Potassium Channels; Rabbits; Sarcolemma; Sulfonamides; Survival Rate; Thiourea

2003
Mitochondrial K ATP channel activation is important in the antiarrhythmic and cardioprotective effects of non-hypotensive doses of nicorandil and cromakalim during ischemia/reperfusion: a study in an intact anesthetized rabbit model.
    Pharmacological research, 2003, Volume: 47, Issue:6

    The roles of cardiomyocyte sarcolemmal ATP-sensitive K(+) (K(ATP)) and mitochondrial K(ATP) channels in the cardioprotection and antiarrhythmic activity induced by K(ATP) channel openers remain obscure, though the mitochondrial K(ATP) channels have been proposed to be involved as a subcellular mediator in cardioprotection afforded by ischemic preconditioning. In the present study, we investigated the effects of administration of non-hypotensive doses of ATP-sensitive K(+) channel (K(ATP)) openers (nicorandil and cromakalim), a specific mitochondrial K(ATP) channel blocker (5-hydroxydecanoate (5-HD)) and a specific sarcolemmal K(ATP) channel blocker (HMR 1883; (1-[5-[2-(5-chloro-o-anisamido)ethyl]-2-methoxyphenyl]sulfonyl-3-methylthiourea) prior to and during coronary occlusion as well as prior to and during post-ischemic reperfusion on survival rate, ischemia-induced and reperfusion-induced arrhythmias and myocardial infarct size in anesthetized albino rabbits. The thorax was opened in the left 4th intercostal space and after pericardiotomy the heart was exposed. In Group I (n=80), occlusion of the left main coronary artery and hence, myocardial ischemia-induced arrhythmias were achieved by tightening a previously placed loose silk ligature for 30min. In Group II (n=184), arrhythmias were induced by reperfusion following a 20 min ligation of the left main coronary artery. Both in Groups I and II, early intravenous infusion of nicorandil (100 micro g/kg bolus+10 micro g/kg/min), cromakalim (0.2 micro g/kg/min), HMR 1883 (3mg/kg)/nicorandil and HMR 1883 (3mg/kg)/cromakalim just prior to and during ischemia increased survival rate (75%, 67%, 86% and 75% versus 60% in the control subgroup in Group I; 75%, 75%, 75% and 67% versus 50% in the control subgroup in Group II), significantly decreased the incidence and severity of life-threatening arrhythmias and significantly decreased myocardial infarct size. However, late intravenous administration of nicorandil or cromakalim at the onset and during reperfusion did neither increase survival rate nor confer any antiarrhythmic or cardioprotective effects. The antiarrhythmic and cardioprotective effects of both nicorandil and cromakalim were abolished by pretreating the rabbits with 5-HD (5mg/kg, i.v. bolus), a selective mitochondrial K(ATP) channel blocker but not by HMR 1883 (3mg/kg). In the present study, higher levels of malondialdehyde (MDA) and lower levels of reduced glutathione (GSH) and superoxide dismutase

    Topics: Analysis of Variance; Animals; Anti-Arrhythmia Agents; Antihypertensive Agents; Arrhythmias, Cardiac; Blood Pressure; Cromakalim; Decanoic Acids; Disease Models, Animal; Glutathione; Heart Rate; Hydroxy Acids; Male; Malondialdehyde; Membrane Proteins; Myocardial Infarction; Myocardial Reperfusion Injury; Nicorandil; Oxidative Stress; Potassium Channels; Rabbits; Sarcolemma; Sulfonamides; Superoxide Dismutase; Survival Rate; Thiourea

2003
Cardioselective K(ATP) channel blockers derived from a new series of m-anisamidoethylbenzenesulfonylthioureas.
    Journal of medicinal chemistry, 2001, Mar-29, Volume: 44, Issue:7

    Sulfonylthioureas exhibiting cardioselective blockade of ATP-sensitive potassium channels (K(ATP) channels) were discovered by stepwise structural variations of the antidiabetic sulfonylurea glibenclamide. As screening assays, reversal of rilmakalim-induced shortening of the cardiac action potential in guinea pig papillary muscles was used to probe for activity on cardiac K(ATP) channels as the target, and membrane depolarization in CHO cells stably transfected with hSUR1/hKir6.2 was used to probe for unwanted side effects on pancreatic K(ATP) channels. Changing glibenclamide's para-arrangement of substituents in the central aromatic ring to a meta-pattern associated with size reduction of the substituent at the terminal nitrogen atom of the sulfonylurea moiety was found to achieve cardioselectivity. An additional change from a sulfonylurea moiety to a sulfonylthiourea moiety along with an appropriate substituent in the ortho-position of the central aromatic system was a successful strategy to further improve potency on the cardiac K(ATP) channel. Among this series of sulfonylthioureas HMR1883, 1-[5-[2-(5-chloro-o-anisamido)ethyl]-2-methoxyphenyl]sulfonyl-3-methylthiourea, and its sodium salt HMR1098 were selected for development and represent a completely new therapeutic approach toward the prevention of life-threatening arrhythmias and sudden cardiac death in patients with coronary heart disease.

    Topics: Action Potentials; Adenosine Triphosphate; Animals; Anti-Arrhythmia Agents; Arrhythmias, Cardiac; ATP-Binding Cassette Transporters; CHO Cells; Cricetinae; Death, Sudden; Electric Stimulation; Female; Guinea Pigs; Heart; In Vitro Techniques; Male; Myocardial Contraction; Potassium Channel Blockers; Potassium Channels; Potassium Channels, Inwardly Rectifying; Receptors, Drug; Structure-Activity Relationship; Sulfonamides; Sulfonylurea Receptors; Thiourea

2001
Effects of the I(K.ATP) blockers glibenclamide and HMR1883 on cardiac electrophysiology during ischemia and reperfusion.
    European journal of pharmacology, 2000, Jun-16, Volume: 398, Issue:2

    Clinical evidence indicates an antiarrhythmic effect of sulfonylureas, which might be blunted by their vascular action. We wanted to investigate the effect of glibenclamide and the new sulfonylthiourea compound 1-[[5-[2-(5-chloro-o-anisamido)ethyl]-2-methoxyphenyl]-sulfonyl]-3 -me thylthiourea (HMR1883) on cardiac electrophysiology in the course of regional ischemia and reperfusion. Isolated rabbit hearts (Langendorff-technique) were pretreated with either vehicle (n=14), 3 micromol/l glibenclamide (n=7) or 3 micromol/l HMR1883 (n=7) before regional ischemia was induced by left coronary artery branch occlusion (45 min) followed by 45 min reperfusion. Unipolar epicardial electrocardiograms were recorded from 256 epicardial AgCl electrodes. Coronary ligation resulted in a decrease in coronary flow (CF) by 35% and in left ventricular pressure (LVP) by 40% in all series. The occluded zone was 23+/-3% in all series. Ischemia led to shortening of the epicardial activation-recovery interval (ARI) in the ischemic area, which was inhibited by both drugs especially in the early phase. In the non-ischemic area, ARIs remained stable and there was no effect of the drugs. Ischemia led to an increase in the regional difference in ARI between ischemic center and border zone. This increase was significantly inhibited by both substances during late ischemia and early reperfusion (until 15 min reperfusion). In addition, the dispersion of ARIs was reduced by both drugs during late ischemia and reperfusion. Ventricular fibrillation was observed in 7/14 (control), 0/7 (glibenclamide), and 0/7 (HMR1883). All ventricular fibrillation occurred during reperfusion. In glibenclamide but not in HMR1883-treated hearts recovery of CF upon reperfusion was significantly depressed (control: 25.5+/-4; HMR1883: 23+/-2.5; glibenclamide: 16+/-1 ml/min, values at 2 min reperfusion), while the elevation of ST-segments of the electrograms in early ischemia was fully prevented by both treatments. We conclude that both glibenclamide and HMR1883 exert an antiarrhythmic effect in this model, and reduce the shortening of the ARIs in the ischemic area, thus attenuating regional differences in ARIs between ischemic and non-ischemic area. Furthermore, unlike glibenclamide HMR1883 does not interfere with postischemic hyperemia.

    Topics: Animals; Arrhythmias, Cardiac; Electrocardiography; Electrophysiology; Glyburide; Heart; In Vitro Techniques; Male; Myocardial Ischemia; Myocardial Reperfusion; Potassium Channel Blockers; Potassium Channels, Inwardly Rectifying; Rabbits; Sulfonamides; Thiourea; Ventricular Fibrillation

2000
ATP-sensitive potassium channel blocker HMR 1883 reduces mortality and ischemia-associated electrocardiographic changes in pigs with coronary occlusion.
    The Journal of pharmacology and experimental therapeutics, 1999, Volume: 291, Issue:2

    ATP-sensitive potassium (K(ATP)) channels are activated during myocardial ischemia. The ensuing potassium efflux leads to a shortening of the action potential duration and depolarization of the membrane by accumulation of extracellular potassium favoring the development of reentrant arrhythmias, including ventricular fibrillation. The sulfonylthiourea HMR 1883 was designed as a cardioselective blocker of myocardial K(ATP) channels for the prevention of arrhythmic sudden death in patients with ischemic heart disease. We investigated the effect of HMR 1883 on sudden cardiac arrhythmic death and electrocardiography (ECG) changes induced by 20 min of left anterior descending coronary artery occlusion in pentobarbital-anesthetized pigs. HMR 1883 (3 mg/kg i.v.) protected pigs from arrhythmic death (91% survival rate versus 33% in control animals; n = 12; p<.05). Ischemic areas were of a similar size. The compound had no effect on hemodynamics and ECG, including Q-T interval, under baseline conditions and no effect on hemodynamics during occlusion. In control animals, left anterior descending coronary artery occlusion lead to a prompt and significant depression of the S-T segment (-0.35 mV) and a prolongation of the Q-J time (+46 ms), the former reflecting heterogeneity in the plateau phase of the action potentials and the latter reflecting irregular impulse propagation and delayed ventricular activation. Both ischemic ECG changes were significantly attenuated by HMR 1883 (S-T segment, -0.14 mV; Q-J time, +15 ms), indicating the importance of K(ATP) channels in the genesis of these changes. In conclusion, the K(ATP) channel blocker HMR 1883, which had no effect on hemodynamics and ECG under baseline conditions, reduced the extent of ischemic ECG changes and sudden death due to ventricular fibrillation during coronary occlusion.

    Topics: Anesthesia; Animals; Arrhythmias, Cardiac; Coronary Disease; Death, Sudden, Cardiac; Electrocardiography; Hemodynamics; Myocardial Ischemia; Potassium; Sulfonamides; Swine; Thiourea

1999
HMR 1883, a cardioselective K(ATP) channel blocker, inhibits ischaemia- and reperfusion-induced ventricular fibrillation in rats.
    Naunyn-Schmiedeberg's archives of pharmacology, 1999, Volume: 360, Issue:3

    Ventricular fibrillation (VF) is a major cause of sudden cardiac death in which myocardial ischemia plays a leading role. During ischaemia activation of ATP-sensitive potassium channels (K(ATP)) occurs, leading to potassium efflux from cardiomyocytes and shortening of the action potential favoring the genesis of ventricular fibrillation. In confirmation of this concept the sulfonylurea glibenclamide, which stimulates insulin release by inhibition of pancreatic K(ATP) channels, has been shown to inhibit VF in different models of ischaemia by inhibition of myocardial K(ATP) channels. HMR 1883 (1-[15-12-(5-chloro-o-anisamido)ethyl]-methoxyphenyl]sulfonyl]-3-m ethylthiourea) was designed as a cardioselective K(ATP) channel blocker. The aim of this study was to show that with this compound it is possible to separate the antifibrillatory from the insulin-releasing effect for the treatment of patients at risk of ischaemia-induced arrhythmias and sudden death. In the present study HMR 1883 reduced VF in Sprague-Dawley rats during prolonged ischaemia and also diminished mortality and the duration of VF in a separate reperfusion experiment at 3 mg/kg and 10 mg/kg with no effect on blood glucose or insulin. Glibenclamide, which was antifibrillatory at 0.3 mg/kg and 1 mg/kg, increased plasma insulin and lowered blood glucose already at a dose as low as 0.01 mg/kg. In conclusion, based on its antifibrillatory action and the absence of significant pancreatic effects at therapeutic doses, HMR 1883 is of potential clinical utility for the prevention of severe arrhythmias in patients with ischaemic heart disease.

    Topics: Adenosine Triphosphate; Administration, Oral; Animals; Arrhythmias, Cardiac; Arterial Occlusive Diseases; Blood Glucose; Blood Pressure; Dose-Response Relationship, Drug; Glyburide; Heart Rate; Injections, Intravenous; Insulin; Male; Myocardial Ischemia; Myocardial Reperfusion; Potassium Channel Blockers; Rats; Rats, Sprague-Dawley; Sulfonamides; Thiourea; Time Factors; Ventricular Fibrillation

1999