cladosporol has been researched along with Colorectal-Neoplasms* in 1 studies
1 other study(ies) available for cladosporol and Colorectal-Neoplasms
Article | Year |
---|---|
Cladosporol A, a new peroxisome proliferator-activated receptor γ (PPARγ) ligand, inhibits colorectal cancer cells proliferation through β-catenin/TCF pathway inactivation.
Cladosporol A, a secondary metabolite from Cladosporium tenuissimum, exhibits antiproliferative properties in human colorectal cancer cells by modulating the expression of some cell cycle genes (p21(waf1/cip1), cyclin D1).. PPARγ activation by cladosporol A was studied by overexpression and RNA interference assays. The interactions between PPARγ and Sp1 were investigated by co-immunoprecipitation and ChIp assays. β-Catenin subcellular distribution and β-catenin/TCF pathway inactivation were analyzed by western blot and RTqPCR, respectively. Cladosporol A-induced β-catenin proteasomal degradation was examined in the presence of the specific inhibitor MG132.. Cladosporol A inhibits cell growth through upregulation of p21(waf1/cip1) gene expression mediated by Sp1-PPARγ interaction. Exposure of HT-29 cells to cladosporol A causes β-catenin nuclear export, proteasome degradation and reduced expression of its target genes. Upon treatment, PPARγ also activates E-cadherin gene at the mRNA and protein levels.. In this work we provide evidence that PPARγ mediates the anti-proliferative action of cladosporol A in colorectal cancer cells. Upon ligand activation, PPARγ interacts with Sp1 and stimulates p21(waf1/cip1) gene transcription. PPARγ activation causes degradation of β-catenin and inactivation of the downstream target pathway and, in addition, upregulates E-cadherin expression reinforcing cell-cell interactions and a differentiated phenotype.. We elucidated the molecular mechanisms by which PPARγ mediates the anticancer activity of cladosporol A. Topics: beta Catenin; Cell Proliferation; Colorectal Neoplasms; Gene Expression Regulation, Neoplastic; HT29 Cells; Humans; Ligands; Naphthalenes; PPAR gamma; Signal Transduction; Sp1 Transcription Factor; TCF Transcription Factors | 2014 |