ckd732 and Disease-Models--Animal

ckd732 has been researched along with Disease-Models--Animal* in 2 studies

Other Studies

2 other study(ies) available for ckd732 and Disease-Models--Animal

ArticleYear
Robust Reductions of Excess Weight and Hyperphagia by Beloranib in Rat Models of Genetic and Hypothalamic Obesity.
    Endocrinology, 2017, 01-01, Volume: 158, Issue:1

    Hypothalamic lesions or deficient melanocortin (MC) signaling via MC4 receptor (MC4r) mutations often lead to hyperphagia and severe treatment-resistant obesity. We tested the methionine aminopeptidase 2-inhibitor beloranib (ZGN-440) in 2 male rat models of obesity, one modeling hypothalamic obesity with a combined medial hypothalamic lesion (CMHL) and the other modeling a monogenic form of obesity with MC4r mutations (MC4r knockout [MC4rKO]). In CMHL rats (age 3 months), postsurgery excess weight gain was significantly inhibited (ZGN-440, 0.2 ± 0.7 g/d; vehicle, 3.8 ± 0.6 g/d; P < 0.001) during 12 days of ZGN-440 treatment (0.1 mg/kg daily subcutaneously) together with a 30% reduction of daily food intake vs vehicle injection. In addition, ZGN-440 treatment improved glucose tolerance and reduced plasma insulin, and circulating levels of α-melanocyte stimulating hormone were increased. Serum lipid levels did not differ significantly in ZGN-440-treated vs vehicle-treated rats. Similar results were found in MC4rKO rats: ZGN-440 treatment (14-21 d) was associated with significant reductions of body weight gain (MC4rKO, -1.7 ± 0.6 vs 2.8 ± 0.4 g/d; lean wild-type controls, -0.7 ± 0.2 vs 1.7 ± 0.7 g/d; ZGN-440 vs vehicle, respectively), reduction of food intake (MC4rKO, -28%; lean controls, -7.5%), and insulin resistance, whereas circulating levels of interleukin-1β did not change. In both obesity models, body temperature and locomotor activity were not affected by ZGN-440 treatment. In conclusion, the robust reduction of body weight in response to ZGN-440 observed in rats with severe obesity is related to a strong reduction of food intake that is likely related to changes in the central regulation of feeding.

    Topics: Aminopeptidases; Animals; Body Temperature; Body Weight; Cinnamates; Cyclohexanes; Disease Models, Animal; Drug Evaluation, Preclinical; Eating; Epoxy Compounds; Gene Expression; Glucose Tolerance Test; Hyperphagia; Hypothalamus, Middle; Insulin Resistance; Leptin; Lipid Metabolism; Liver; Male; Metalloendopeptidases; Obesity; Rats, Sprague-Dawley; Rats, Transgenic; Receptor, Melanocortin, Type 4; Sesquiterpenes

2017
Novel inhibitors targeted to methionine aminopeptidase 2 (MetAP2) strongly inhibit the growth of cancers in xenografted nude model.
    International journal of cancer, 2005, Mar-10, Volume: 114, Issue:1

    Inhibition of angiogenesis is emerging as a promising strategy for the treatment of cancer. In our study reported here, the effects of 4 highly potent methionine aminopeptidase 2 (MetAP2) inhibitors, IDR-803, IDR-804, IDR-805 and CKD-732 (designed by structure-based molecular modeling), on angiogenesis and tumor growth were assessed. Concentrations of these inhibitors as low as 2.5 nM were able to inhibit the growth of human umbilical vein endothelial cells (HUVEC) by as much as 50%, arresting growth in the G1 stage of mitosis. An intracellular accumulation of p21(WAF1/Cip1) protein was also observed. Furthermore, at higher concentrations (25 nM) of these 4 MetAP2 inhibitors, a significant induction of apoptosis was apparent in the same HUVEC cultures. As a result of these findings, the possible anticancer effects of these inhibitors were examined, utilizing the SNU-398 hepatoma cell line. Interestingly, pretreatment with these inhibitors led to an increased number of apoptotic cells of up to 60% or more, compared to untreated controls. Moreover, utilizing an in vivo xenografted murine model, these inhibitors suppressed the growth of engrafted tumor. In conclusion, these 4 inhibitory compounds potently exert an antiangiogenic effect to inhibit the growth of cancers in vivo and could potentially be useful for the treatment of a variety of cancers.

    Topics: Aminopeptidases; Angiogenesis Inhibitors; Animals; Apoptosis; Blotting, Western; Carcinoma, Hepatocellular; Cell Line, Tumor; Cinnamates; Cyclohexanes; Disease Models, Animal; Endothelial Cells; Epoxy Compounds; Fatty Acids, Unsaturated; Humans; Liver Neoplasms; Metalloendopeptidases; Mice; Mice, Nude; Neovascularization, Pathologic; O-(Chloroacetylcarbamoyl)fumagillol; Sesquiterpenes; Transplantation, Heterologous; Umbilical Veins

2005