citraconic-acid has been researched along with Infarction--Middle-Cerebral-Artery* in 2 studies
2 other study(ies) available for citraconic-acid and Infarction--Middle-Cerebral-Artery
Article | Year |
---|---|
Neuro-protective effect of monomethyl fumarate on ischemia reperfusion injury in rats: Role of Nrf2/HO1 pathway in peri-infarct region.
Post stroke recanalization has been associated with increased risk of oxidative stress. Stimulating endogenous antioxidant pathway by activation of nuclear factor erythroid-2-related factor-2 (Nrf2) plays a key role in neuronal defense against inflammation and oxidative stress in penumbra. Here, we explored whether monomethyl fumarate (MMF) could produce neuro-protection after ischemia/reperfusion (I/R) injury via Nrf2/HO1 activation. In male SD rats, middle cerebral artery was occluded for 90 min and confirmed using Laser Doppler flowmeter. MMF (10, 20 and 40 mg/kg) was administered in two divided doses at 30 min post ischemia and 5-10 min after reperfusion. After 24 h, effect on neurobehavioral parameters, infarct damage by TTC staining and MRI, oxidative stress and inflammatory cytokines were assessed. Expression studies of nuclear Nrf2 and cytoplasmic HO1 were performed in peri-infarct cortex and striatum; followed by dual immunofluorescence study to check the specific cell type. I/R induced neurobehavioral deficits and infarct damage were significantly (p < 0.05) attenuated by MMF (20 and 40 mg/kg). MMF, 20 mg/kg, significantly normalized I/R induced altered redox status and increased levels of TNF-α, IL-1β in the ipsilateral cortex. MRI data showed significantly reduced infarct in cortex but not in striatum after MMF treatment. Expression of nuclear Nrf2 and cytoplasmic HO1 were significantly (p < 0.05) increased in peri-infarct cortex after treatment with MMF. Additionally, dual immunofluorescence showed increased Nrf2 expression in neurons and HO1 expression in neurons as well as astrocytes in peri-infarct cortex after MMF treatment. Our results show the neuro-protective potential of MMF probably by restricting the progression of damage from striatum to cortex through activation of Nrf2/HO1 pathway in peri-infarct cortex. Topics: Animals; Fumarates; Heme Oxygenase (Decyclizing); Infarction, Middle Cerebral Artery; Male; Maleates; Neuroprotective Agents; NF-E2-Related Factor 2; Rats; Rats, Sprague-Dawley; Reperfusion Injury; Signal Transduction | 2019 |
Dimethyl Fumarate and Monomethyl Fumarate Promote Post-Ischemic Recovery in Mice.
Oxidative stress plays an important role in cerebral ischemia-reperfusion injury. Dimethyl fumarate (DMF) and its primary metabolite monomethyl fumarate (MMF) are antioxidant agents that can activate the nuclear factor erythroid-2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway and induce the expression of antioxidant proteins. Here, we evaluated the impact of DMF and MMF on ischemia-induced brain injury and whether the Nrf2 pathway mediates the effects provided by DMF and MMF in cerebral ischemia-reperfusion injury. Using a mouse model of transient focal brain ischemia, we show that DMF and MMF significantly reduce neurological deficits, infarct volume, brain edema, and cell death. Further, DMF and MMF suppress glial activation following brain ischemia. Importantly, the protection of DMF and MMF was mostly evident during the subacute stage and was abolished in Nrf2 Topics: Animals; Brain Edema; Calcium-Binding Proteins; Dimethyl Fumarate; Disease Models, Animal; Dose-Response Relationship, Drug; Fumarates; Glial Fibrillary Acidic Protein; Glutathione; Immunosuppressive Agents; Infarction, Middle Cerebral Artery; Maleates; Malondialdehyde; Mice; Mice, Inbred C57BL; Microfilament Proteins; Neurologic Examination; Neuroprotective Agents; NF-E2-Related Factor 2; Oxidative Stress; Recovery of Function; Reperfusion Injury; Time Factors | 2016 |