citraconic-acid and Disease-Models--Animal

citraconic-acid has been researched along with Disease-Models--Animal* in 6 studies

Other Studies

6 other study(ies) available for citraconic-acid and Disease-Models--Animal

ArticleYear
Comparison of Neuroprotective Effects of Monomethylfumarate to the Sigma 1 Receptor Ligand (+)-Pentazocine in a Murine Model of Retinitis Pigmentosa.
    Investigative ophthalmology & visual science, 2020, 03-09, Volume: 61, Issue:3

    Activating the cell survival modulator sigma 1 receptor (Sig1R) delays cone photoreceptor cell loss in Pde6βrd10/J (rd10) mice, a model of retinitis pigmentosa. Beneficial effects are abrogated in rd10 mice lacking NRF2, implicating NRF2 as essential to Sig1R-mediated cone neuroprotection. Here we asked whether activation of NRF2 alone is sufficient to rescue cones in rd10 mice.. Expression of antioxidant genes was evaluated in 661W cells and in mouse retinas after treatment with monomethylfumarate (MMF), a potent NRF2 activator. Rd10 mice were administered MMF (50 mg/kg) or the Sig1R ligand (+)-pentazocine (PTZ; 0.5 mg/kg) intraperitoneally (every other day, P14-42). Mice were evaluated for visual acuity (optokinetic tracking response), retinal function (electroretinography) and architecture (SD-OCT); histologic retinal sections were evaluated morphometrically.. MMF treatment increased Nrf2, Nqo1, Cat, Sod1, and Hmox1 expression in vitro and in vivo. Visual acuity of (+)-PTZ-treated rd10 mice was similar to wild-type mice; however, MMF treatment did not alter acuity compared with nontreated rd10 mice. Cone electroretinography b-wave amplitudes were greater in PTZ-treated than nontreated or MMF-treated rd10 mice. SD-OCT assessment of retinal thickness was greater in (+)-PTZ-treated mice versus nontreated or MMF-treated rd10 mice. Morphometric assessment of the outer nuclear layer revealed approximately 18 cells/100 µm retinal length in (+)-PTZ-treated rd10 mice, but only approximately 10 to 12 cells/100 µm in MMF-treated and nontreated rd10 retinas.. Activation of NRF2 using MMF, at least at our dosing regimen, is insufficient to attenuate catastrophic photoreceptor damage characteristic of rd10 mice. The data prompt investigation of additional mechanisms involved in Sig1R-mediated retinal neuroprotection.

    Topics: Animals; Antioxidants; Disease Models, Animal; Electroretinography; Fumarates; Hydroquinones; Maleates; Mice, Knockout; Neuroprotection; Neuroprotective Agents; NF-E2-Related Factor 2; Pentazocine; Receptors, sigma; Retinal Cone Photoreceptor Cells; Retinal Rod Photoreceptor Cells; Retinitis Pigmentosa; Sigma-1 Receptor; Tomography, Optical Coherence; Up-Regulation; Visual Acuity

2020
Monomethyl fumarate alleviates sepsis-induced hepatic dysfunction by regulating TLR-4/NF-κB signalling pathway.
    Life sciences, 2018, Dec-15, Volume: 215

    Sepsis is a potentially fatal illness that can lead to impairment of multiple organs such as liver. The condition is deeply associated with oxidative stress and inflammation. Monomethyl fumarate (MMF) has manifested antioxidant and immunomodulatory properties. The aim of current study was to evaluate protective effects of MMF in sepsis-induced hepatic dysfunction.. Sepsis was induced by cecal ligation and puncture (CLP). Wistar rats were assigned to one of sham, CLP, CLP + dexamethasone (as positive control of inflammation) and CLP + MMF groups. Levels of serum IL-1β, IL-6, IL-10, AST, ALT and γ‑GT were quantified. Furthermore, Hepatic levels of GSH and MDA and mRNA expression of TNF and NFKBIA along with hepatic protein level of TLR-4 were assessed. Also, histopathological study of liver was carried out to evaluate hepatic injuries.. Septic rats demonstrated risen levels of IL-1β, IL-6, IL-10, AST, ALT and γ‑GT, while treatment with dexamethasone or MMF attenuated these levels. Moreover, enhancements in protein level of TLR-4 and mRNA levels of TNF and NFKBIA were observed in CLP rats. These elevations were mitigated in CLP-induced rats that were treated with either dexamethasone or MMF. Treatment with dexamethasone or MMF also shifted sepsis-induced disturbance in the levels of GSH and MDA towards sham levels. Hepato-protective effects of dexamethasone and MMF were further confirmed by histopathological observations.. Our findings imply that MMF alleviates sepsis-induced hepatic dysfunction by mitigating the inflammatory and oxidative state and this effect is at least partly mediated by the inhibition of TLR-4/NF-κB signalling pathway.

    Topics: Animals; Antioxidants; Dexamethasone; Disease Models, Animal; Fumarates; Inflammation; Liver Diseases; Male; Maleates; NF-kappa B; NF-KappaB Inhibitor alpha; Oxidative Stress; Rats; Rats, Wistar; RNA, Messenger; Sepsis; Signal Transduction; Toll-Like Receptor 4

2018
Distinct Nrf2 Signaling Mechanisms of Fumaric Acid Esters and Their Role in Neuroprotection against 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Induced Experimental Parkinson's-Like Disease.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2016, 06-08, Volume: 36, Issue:23

    A promising approach to neurotherapeutics involves activating the nuclear-factor-E2-related factor 2 (Nrf2)/antioxidant response element signaling, which regulates expression of antioxidant, anti-inflammatory, and cytoprotective genes. Tecfidera, a putative Nrf2 activator, is an oral formulation of dimethylfumarate (DMF) used to treat multiple sclerosis. We compared the effects of DMF and its bioactive metabolite monomethylfumarate (MMF) on Nrf2 signaling and their ability to block 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced experimental Parkinson's disease (PD). We show that in vitro DMF and MMF activate the Nrf2 pathway via S-alkylation of the Nrf2 inhibitor Keap1 and by causing nuclear exit of the Nrf2 repressor Bach1. Nrf2 activation by DMF but not MMF was associated with depletion of glutathione, decreased cell viability, and inhibition of mitochondrial oxygen consumption and glycolysis rates in a dose-dependent manner, whereas MMF increased these activities in vitro However, both DMF and MMF upregulated mitochondrial biogenesis in vitro in an Nrf2-dependent manner. Despite the in vitro differences, both DMF and MMF exerted similar neuroprotective effects and blocked MPTP neurotoxicity in wild-type but not in Nrf2 null mice. Our data suggest that DMF and MMF exhibit neuroprotective effects against MPTP neurotoxicity because of their distinct Nrf2-mediated antioxidant, anti-inflammatory, and mitochondrial functional/biogenetic effects, but MMF does so without depleting glutathione and inhibiting mitochondrial and glycolytic functions. Given that oxidative damage, neuroinflammation, and mitochondrial dysfunction are all implicated in PD pathogenesis, our results provide preclinical evidence for the development of MMF rather than DMF as a novel PD therapeutic.. Almost two centuries since its first description by James Parkinson, Parkinson's disease (PD) remains an incurable disease with limited symptomatic treatment. The current study provides preclinical evidence that a Food and Drug Administration-approved drug, dimethylfumarate (DMF), and its metabolite monomethylfumarate (MMF) can block nigrostriatal dopaminergic neurodegeneration in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of PD. We elucidated mechanisms by which DMF and its active metabolite MMF activates the redox-sensitive transcription factor nuclear-factor-E2-related factor 2 (Nrf2) to upregulate antioxidant, anti-inflammatory, mitochondrial biosynthetic and cytoprotective genes to render neuroprotection via distinct S-alkylating properties and depletion of glutathione. Our data suggest that targeting Nrf2-mediated gene transcription using MMF rather than DMF is a promising approach to block oxidative stress, neuroinflammation, and mitochondrial dysfunction for therapeutic intervention in PD while minimizing side effects.

    Topics: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine; Animals; Antigens, CD; Cell Line, Transformed; Disease Models, Animal; Dose-Response Relationship, Drug; Fumarates; Gene Expression Regulation; Humans; Maleates; Mice; Mice, Inbred C57BL; Mice, Knockout; Neuroprotective Agents; NF-E2-Related Factor 2; Parkinsonian Disorders; Rats; Signal Transduction; Tyrosine

2016
Dimethyl Fumarate and Monomethyl Fumarate Promote Post-Ischemic Recovery in Mice.
    Translational stroke research, 2016, Volume: 7, Issue:6

    Oxidative stress plays an important role in cerebral ischemia-reperfusion injury. Dimethyl fumarate (DMF) and its primary metabolite monomethyl fumarate (MMF) are antioxidant agents that can activate the nuclear factor erythroid-2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway and induce the expression of antioxidant proteins. Here, we evaluated the impact of DMF and MMF on ischemia-induced brain injury and whether the Nrf2 pathway mediates the effects provided by DMF and MMF in cerebral ischemia-reperfusion injury. Using a mouse model of transient focal brain ischemia, we show that DMF and MMF significantly reduce neurological deficits, infarct volume, brain edema, and cell death. Further, DMF and MMF suppress glial activation following brain ischemia. Importantly, the protection of DMF and MMF was mostly evident during the subacute stage and was abolished in Nrf2

    Topics: Animals; Brain Edema; Calcium-Binding Proteins; Dimethyl Fumarate; Disease Models, Animal; Dose-Response Relationship, Drug; Fumarates; Glial Fibrillary Acidic Protein; Glutathione; Immunosuppressive Agents; Infarction, Middle Cerebral Artery; Maleates; Malondialdehyde; Mice; Mice, Inbred C57BL; Microfilament Proteins; Neurologic Examination; Neuroprotective Agents; NF-E2-Related Factor 2; Oxidative Stress; Recovery of Function; Reperfusion Injury; Time Factors

2016
Impact of Minocycline on Extracellular Matrix Metalloproteinase Inducer, a Factor Implicated in Multiple Sclerosis Immunopathogenesis.
    Journal of immunology (Baltimore, Md. : 1950), 2016, 11-15, Volume: 197, Issue:10

    Extracellular matrix metalloproteinase inducer (EMMPRIN, CD147) is a transmembrane glycoprotein that is upregulated on leukocytes in active lesions in multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). Administration of anti-EMMPRIN Abs reduces the severity of EAE. Minocycline is a tetracycline antibiotic with immune-modulatory properties that decreases the severity of EAE; it was recently found to attenuate the conversion from a first demyelinating event to clinically definite MS in a phase III trial. We investigated whether and how minocycline affects the expression of EMMPRIN on T cells in culture and in mice afflicted with EAE. EMMPRIN expression in cultures of mouse splenocytes or human PBMCs was elevated upon polyclonal T cell activation, and this was reduced by minocycline correspondent with decreased P-Akt levels. An established MS medication, IFN-β, also diminished EMMPRIN levels on human cells whereas this was not readily observed for fingolimod or monomethylfumarate. In EAE-afflicted mice, minocycline treatment significantly reduced EMMPRIN levels on splenic lymphocytes at the presymptomatic (day 7) phase, and prevented the development of disease. Day 7 spleen transcripts from minocycline-treated EAE mice had a significantly lower MMP-9/TIMP-1 ratio, and significantly lower MCT-1 and CD98 levels, factors associated with EMMPRIN function. Day 16 (peak clinical severity) CNS samples from EAE mice had prominent representation of inflammatory perivascular cuffs, inflammatory molecules and EMMPRIN, and these were abrogated by minocycline. Overall, minocycline attenuated the activation-induced elevation of EMMPRIN on T cells in culture and in EAE mice, correspondent with reduced immune function and EAE CNS pathology.

    Topics: Animals; Anti-Bacterial Agents; Basigin; Central Nervous System; Clinical Trials, Phase III as Topic; Disease Models, Animal; Encephalomyelitis, Autoimmune, Experimental; Fingolimod Hydrochloride; Fumarates; Humans; Interferon-beta; Lymphocyte Activation; Maleates; Matrix Metalloproteinase 9; Mice; Mice, Inbred C57BL; Minocycline; Monocytes; Multiple Sclerosis; T-Lymphocytes; Tissue Inhibitor of Metalloproteinase-1

2016
Monomethylfumarate induces γ-globin expression and fetal hemoglobin production in cultured human retinal pigment epithelial (RPE) and erythroid cells, and in intact retina.
    Investigative ophthalmology & visual science, 2014, May-13, Volume: 55, Issue:8

    Sickle retinopathy (SR) is a major cause of vision loss in sickle cell disease (SCD). There are no strategies to prevent SR and treatments are extremely limited. The present study evaluated (1) the retinal pigment epithelial (RPE) cell as a hemoglobin producer and novel cellular target for fetal hemoglobin (HbF) induction, and (2) monomethylfumarate (MMF) as an HbF-inducing therapy and abrogator of oxidative stress and inflammation in SCD retina.. Human globin gene expression was evaluated by RT-quantitative (q)PCR in the human RPE cell line ARPE-19 and in primary RPE cells isolated from Townes humanized SCD mice. γ-Globin promoter activity was monitored in KU812 stable dual luciferase reporter expressing cells treated with 0 to 1000 μM dimethylfumarate, MMF, or hydroxyurea (HU; positive control) by dual luciferase assay. Reverse transcriptase-qPCR, fluorescence-activated cell sorting (FACS), immunofluorescence, and Western blot techniques were used to evaluate γ-globin expression and HbF production in primary human erythroid progenitors, ARPE-19, and normal hemoglobin producing (HbAA) and homozygous β(s) mutation (HbSS) RPE that were treated similarly, and in MMF-injected (1000 μM) HbAA and HbSS retinas. Dihydroethidium labeling and nuclear factor (erythroid-derived 2)-like 2 (Nrf2), IL-1β, and VEGF expression were also analyzed.. Retinal pigment epithelial cells express globin genes and synthesize adult and fetal hemoglobin MMF stimulated γ-globin expression and HbF production in cultured RPE and erythroid cells, and in HbSS mouse retina where it also reduced oxidative stress and inflammation.. The production of hemoglobin by RPE suggests the potential involvement of this cell type in the etiology of SR. Monomethylfumarate influences multiple parameters consistent with improved retinal health in SCD and may therefore be of therapeutic potential in SR treatment.

    Topics: Adult; Animals; Antioxidants; Cells, Cultured; Disease Models, Animal; Erythroid Cells; Fetal Hemoglobin; Fumarates; gamma-Globins; Humans; Maleates; Mice; NF-E2-Related Factor 2; Oxidative Stress; Retina; Retinal Pigment Epithelium

2014