cinidon-ethyl and Prostatic-Neoplasms

cinidon-ethyl has been researched along with Prostatic-Neoplasms* in 2 studies

Other Studies

2 other study(ies) available for cinidon-ethyl and Prostatic-Neoplasms

ArticleYear
High hydrostatic pressure enhances the anti-proliferative properties of lotus bee pollen on the human prostate cancer PC-3 cells via increased metabolites.
    Journal of ethnopharmacology, 2020, Oct-28, Volume: 261

    The beneficial effects of bee pollen on prostate diseases are well known. Clinicians confirm that, in nonbacterial prostate diseases, bee pollen improves the condition of patients effectively. However, there is insufficient evidence to rate effectiveness of bee pollen on prostate cancer.. High hydrostatic pressure (HHP), an effective non-thermal technique to improve the nutritional quality and bio-functionality of plant-based foods, was used to increase the anti-proliferative properties of Lotus (Nelumbo nucifera) bee pollen (LBP) in prostate cancer PC-3 cells via enhancement of bioactive compounds.. Freeze-dried lotus bee pollen produced from Fu Zhou city, Jiangxi province, China, was processed by high hydrostatic pressure (HHP). The anti-proliferative activities, apoptosis of ethanol and methanol extracts in prostate cancer PC-3 cells was evaluated using MTT method and Annexin-V/PI cell apoptosis assay kit, respectively. The changes of metabolites were determined using UPLC-Triple-TOF-MS analysis platform.. HHP treatment enhanced anti-proliferative activities, cell apoptosis, cell cycle disruption, glutathione-depletion in prostate cancer PC-3 cells. The metabolomics analysis showed that some metabolites such as chaetoglobosin A, glutathione oxidized, cyanidin 3-rutinoside, brassicoside, sophoranone, curcumin II, soyasaponin II were significantly increased (p < 0.05) after the HHP treatment, PCA results shown that these bioactive components have quite correlation with anti-proliferative activities of lotus bee pollen on the PC-3 cells. The results indicated that HHP enhances the anti-prostate cancer activity of lotus bee pollen via increased metabolites.

    Topics: Antineoplastic Agents, Phytogenic; Apoptosis; Cell Proliferation; Flowers; G2 Phase Cell Cycle Checkpoints; Humans; Hydrostatic Pressure; Lotus; Male; Metabolome; PC-3 Cells; Plant Extracts; Pollen; Prostatic Neoplasms

2020
Proliferative effect of whey from cows' milk varying in phyto-oestrogens in human breast and prostate cancer cells.
    The Journal of dairy research, 2012, Volume: 79, Issue:2

    Intake of dietary phyto-oestrogens has received a great deal of attention owing to their potential influence on hormone-sensitive cancers such as breast and prostate cancer. Cows' milk contains phyto-oestrogens and the content varies according to the composition of the feed and the type and amount of legumes used. In this study we evaluated the proliferative effect of milk (whey) with different phyto-oestrogen content in human breast (MCF-7) and prostate cancer cells (PC-3). Milk was obtained from cows fed either a birdsfoot trefoil-timothy silage based ration (B1) or two different red clover silage based diets (R1 and R2) resulting in total phyto-oestrogen contents of 403, 1659 and 1434 ng/ml for the B1, R1 and R2 diets, respectively. Whey was produced from the milk and added to cell culture medium in concentrations up to 10% for MCF-7 cells and 5% for PC-3 cells. Cell proliferation was measured fluorometrically after 7 d for MCF-7 cells and 5 d for PC-3 cells. There was no significant difference in the proliferative effect of whey from the different dietary treatments at any of the whey concentrations tested. An anti-proliferative effect (P<0·01) of 5 and 10% whey was seen when tested in the presence of 10 pM oestradiol in the medium. This effect was independent of dietary treatment of cows. Whey induced a significant (P<0·01) proliferative response in PC-3 cells independent of dietary treatment. Purified equol in concentrations similar to equol concentrations in milk decreased PC-3 cell proliferation, and therefore the stimulatory effect of whey in PC-3 cells is believed to be mediated by other bioactives than equol. In conclusion, our results suggest that using whey in these proliferation assays, it was not possible to discriminate between milk with high or low levels of phyto-oestrogens.

    Topics: Animal Feed; Animals; Breast Neoplasms; Cattle; Cell Line, Tumor; Cell Proliferation; Fabaceae; Female; Humans; Lotus; Male; Milk; Phleum; Phytoestrogens; Prostatic Neoplasms; Silage; Trifolium

2012