cimifugin and Disease-Models--Animal

cimifugin has been researched along with Disease-Models--Animal* in 4 studies

Other Studies

4 other study(ies) available for cimifugin and Disease-Models--Animal

ArticleYear
Cimifugin ameliorates imiquimod-induced psoriasis by inhibiting oxidative stress and inflammation via NF-κB/MAPK pathway.
    Bioscience reports, 2020, 06-26, Volume: 40, Issue:6

    Cimifugin is an important component of chromones in the dry roots of Saposhikovia divaricata for treating inflammatory diseases. However, the possible effect of cimifugin in psoriasis needs further investigation. This current work was designed to evaluate the effects of cimifugin in psoriasis in vivo and in vitro, and unravel the underlying molecular mechanism. Here, we used imiquimod (IMQ) or tumor necrosis factor (TNF)-α to induce a psoriasis-like model in mice or keratinocytes. Obviously, the results showed that cimifugin reduced epidermal hyperplasia, psoriasis area severity index (PASI) scores, ear thickness and histological psoriasiform lesions in IMQ-induced mice. The decreased levels of reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT), and the accumulation of malondialdehyde (MDA) in skin tissues by IMQ were attenuated by cimifugin. Furthermore, it was observed that cimifugin effectively reversed IMQ-induced up-regulation of proinflammatory cytokines, including TNF-α, IL-6, IL-1β, IL-17A, and IL-22. Mechanically, we noticed that cimifugin inhibited IMQ-activated phosphorylation of NF-κB (IκB and p65) and MAPK (JNK, ERK, and p38) signaling pathways. Similar alterations for oxidative stress and inflammation parameters were also detected in TNF-α-treated HaCaT cells. In addition, cimifugin-induced down-regulation of ICAM-1 were observed in TNF-α-treated cells. Altogether, our findings suggest that cimifugin protects against oxidative stress and inflammation in psoriasis-like pathogenesis by inactivating NF-κB/MAPK signaling pathway, which may develop a novel and effective drug for the therapy of psoriasis.

    Topics: Animals; Anti-Inflammatory Agents; Antioxidants; Chromones; Cytokines; Disease Models, Animal; HaCaT Cells; Humans; Imiquimod; Intercellular Adhesion Molecule-1; Keratinocytes; Male; Mice, Inbred BALB C; Mitogen-Activated Protein Kinases; NF-kappa B; Oxidative Stress; Phosphorylation; Psoriasis; Signal Transduction; Skin

2020
Huangqi-Fangfeng protects against allergic airway remodeling through inhibiting epithelial-mesenchymal transition process in mice via regulating epithelial derived TGF-β1.
    Phytomedicine : international journal of phytotherapy and phytopharmacology, 2019, Volume: 64

    Long-term exposure to aeroallergens such as house dust mite (HDM) could result in airway inflammation and airway remodeling, characteristic features of allergic asthma. Huangqi-Fangfeng (HF), an important "couplet medicines" of Yu-Ping-Feng-San (YPFS), mediates allergen-induced airway inflammation in mice, but its role in the airway remodeling is not known.. To evaluate the effects of HF on airway remodeling of allergic asthma in a murine model and to investigate the underlying mechanisms in vivo and in vitro.. The main components of HF were analyzed by HPLC. The HDM-induced asthma mice model was established to study the effects of HF on airway inflammation and airway remodeling in vivo. Enhanced pause (Penh) index value was used as an indicator of airway hyper-reactivity. Bronchoalveolar lavage fluid (BALF) was processed for differential cell counting and determination of cytokines production. The lungs were fixed in 4% paraformaldehyde for histological examination after staining with H&E, trichrome and IHC. Production of interleukin (IL)-4, IL-5, IL-13, and transforming growth factor beta-1 (TGF-β1) in BALF and lung tissues, IgE in serum were measured by ELISAs. Expression of epithelial markers and mesenchymal markers were detected by immunohistochemistry and western blots. The effects of HF and its components on epithelial-mesenchymal transition (EMT) were detected in human bronchial epithelial cells (16HBE) treated with TGF-β1 and HDM.. The main components of Huangqi-Fangfeng detected by HPLC were Calycosin, Formononetin and Cimifugin. In HDM-induced allergic asthma mice model, respiratory exposure to HDM lead to airway hyperresponsiveness and thickening of the smooth muscle layer in the airway. TGF-β1 levels increased in mice airways while epithelial cells lost expression of E-cadherin and gained expression of the mesenchymal proteins N-cadherin, α-SMA and collagen І. These changes were relieved by treatment with HF. Furthermore, restored epithelial markers expression treated with individual components were also detectable in 16HBE cells.. These results demonstrated that Huangqi-Fangfeng protected against allergic airway remodeling through inhibiting epithelial-mesenchymal transition process in mice via regulating epithelial derived TGF-β1.

    Topics: Airway Remodeling; Animals; Anti-Asthmatic Agents; Apiaceae; Asthma; Astragalus propinquus; Bronchi; Bronchoalveolar Lavage Fluid; Chromones; Disease Models, Animal; Drugs, Chinese Herbal; Epithelial Cells; Epithelial-Mesenchymal Transition; Humans; Isoflavones; Lung; Male; Mice, Inbred BALB C; Transforming Growth Factor beta1

2019
Yu-Ping-Feng-San ameliorates recurrent allergic inflammation of atopic dermatitis by repairing tight junction defects of the epithelial barrier.
    Phytomedicine : international journal of phytotherapy and phytopharmacology, 2019, Feb-15, Volume: 54

    Atopic dermatitis (AD) is a common allergic inflammatory skin disease, concomitant with a high relapse rate. Yu-Ping-Feng-San (YPFS), a well-known Chinese herbal decoction, reduces the AD relapse rate and recurring severity incidence. However, the underlying mechanism of YPFS on resisting AD recurrence is still unknown and further study is needed.. To evaluate the effects of YPFS on recurrent allergic inflammation of AD in a murine model and to investigate the underlying mechanisms in vivo and ex vivo.. A fluorescein isothiocyanate (FITC)-induced AD relapsing mouse model was established to study the effects of YPFS and three active components, claycosin, formononetin, and cimifugin, on recurrent allergic inflammation in vivo. Histological analyses of ear tissue inflammation were evaluated by hematoxylin and eosin staining. Production of interleukin (IL)-4, IL-5, IL-13, and interferon-gamma in mice ear tissues, IgE in serum, and thymic stromal lymphopoietin (TSLP) in cell cultures were measured by ELISAs. Tight junction (TJ) expression was detected by immunohistochemistry and western blots. Epithelial barrier integrity was observed with electron microscopy, transepithelial electric resistance (TER), and paracellular flux measurements. HaCaT cells were utilized for ex vivo cellular analyses.. In the recurrent phase of AD, YPFS exhibited both short- and long-term anti-allergic inflammatory efficacy with reduced ear tissue inflammation and decreased IL-4, IL-5, IL-13, and IgE production. The three active components, claycosin, formononetin, and cimifugin, showed similar effects as YPFS. Stimulus-induced decreased TER and increased FITC-dextran flux in air-liquid interface cultures of HaCaT cells were significantly repaired by YPFS and the three active components. Notably, the upregulated TJ (CLDN-1 and occludin) expression of epithelium was observed only with YPFS and the three components-treated mice as opposed to the result using conventional anti-allergy medicines. Restored TJ expression by YPFS three components was also detectable in the remission phase of AD. Moreover, decreased TJ expression influenced the effects of YPFS on epithelial cells-derived TSLP production.. YPFS ameliorated recurrent allergic inflammation of AD by repairing TJ defects of epithelial barriers. Intervening epithelial barrier functions could be a preventive and therapeutic approach for recurrent allergic inflammation of AD.

    Topics: Animals; Anti-Allergic Agents; Chromones; Cytokines; Dermatitis, Atopic; Disease Models, Animal; Drugs, Chinese Herbal; Epithelium; Fluorescein-5-isothiocyanate; Fluorescent Dyes; Inflammation; Isoflavones; Mice; Mice, Inbred BALB C; Recurrence; Thymic Stromal Lymphopoietin; Tight Junctions

2019
Cimifugin suppresses allergic inflammation by reducing epithelial derived initiative key factors via regulating tight junctions.
    Journal of cellular and molecular medicine, 2017, Volume: 21, Issue:11

    Cimifugin is a bioactive component of Saposhnikovia divaricata, a Chinese herb for treating allergy. Our previous studies demonstrated that cimifugin inhibited allergic inflammation efficiently. This study aims to determine the mechanism of cimifugin on epithelial cells in allergic inflammation. Mice were sensitized and challenged with FITC to establish type 2 atopic dermatitis (AD) model. The initial stage of AD model, in which mice were just sensitized with FITC, was established in vivo and immortalized human epidermal (HaCaT) cells were utilized in vitro. Initiative key cytokines, TSLP and IL-33, were measured by ELISA, the junctions in ECs were observed by electron microscopy and TJs (CLDN-1, occludin and CLDND1) were assessed by Western blot, immunohistochemistry and immunofluorescence. The results showed that TSLP and IL-33 were inhibited significantly by cimifugin in the initial stage of AD model. Simultaneously, cimifugin reduced the separated gap among the epithelial cells and increased the expression of TJs. Similar effects on TSLP/IL-33 and TJs were obtained in vitro. The effect of cimifugin on TSLP decreased significantly when expression of CLDN1 was interfered with siRNA and this implied cimifugin inhibits initiative cytokines through restoring TJs. Furthermore, cimifugin administered only in the initial stage obviously attenuated the ultimate allergic inflammation, which indicate that impacts of cimifugin in the initial stage on TSLP/IL-33 and TJs are sufficient for suppressing allergic inflammation. This study not only revealed the mechanisms of cimifugin, but also indicated the possibility of initiative key cytokines and TJs as therapeutic targets.

    Topics: Animals; Anti-Allergic Agents; Apiaceae; Cell Line, Transformed; Chromones; Claudin-1; Claudins; Dermatitis, Atopic; Disease Models, Animal; Fluorescein-5-isothiocyanate; Gene Expression Regulation; Humans; Immunoglobulins; Inflammation; Interleukin-33; Keratinocytes; Mice; Mice, Inbred BALB C; Occludin; Receptors, Cytokine; Signal Transduction; Tight Junctions

2017