Page last updated: 2024-10-25

cilostazol and Arterial Brain Diseases

cilostazol has been researched along with Arterial Brain Diseases in 2 studies

Research Excerpts

ExcerptRelevanceReference
" The effects of cilostazol and aspirin on ischemic stroke prevention and treatment were almost equal (combined odds ratio (OR) 0."8.89Systematic study of cilostazol on secondary stroke prevention: a meta-analysis. ( Bi, Q; Qian, Y, 2013)
"To assess whether cilostazol, a phosphodiesterase III inhibitor, improves treadmill and community-based walking ability and health-related quality of life (HQL) in patients with intermittent claudication resulting from peripheral arterial disease (PAD)."8.81Effect of cilostazol on treadmill walking, community-based walking ability, and health-related quality of life in patients with intermittent claudication due to peripheral arterial disease: meta-analysis of six randomized controlled trials. ( Forbes, WP; Heckman, J; Hiatt, WR; McCarthy, WJ; Regensteiner, JG; Ware, JE; Zhang, P, 2002)
" The effects of cilostazol and aspirin on ischemic stroke prevention and treatment were almost equal (combined odds ratio (OR) 0."4.89Systematic study of cilostazol on secondary stroke prevention: a meta-analysis. ( Bi, Q; Qian, Y, 2013)
"To assess whether cilostazol, a phosphodiesterase III inhibitor, improves treadmill and community-based walking ability and health-related quality of life (HQL) in patients with intermittent claudication resulting from peripheral arterial disease (PAD)."4.81Effect of cilostazol on treadmill walking, community-based walking ability, and health-related quality of life in patients with intermittent claudication due to peripheral arterial disease: meta-analysis of six randomized controlled trials. ( Forbes, WP; Heckman, J; Hiatt, WR; McCarthy, WJ; Regensteiner, JG; Ware, JE; Zhang, P, 2002)

Research

Studies (2)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's1 (50.00)29.6817
2010's1 (50.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Qian, Y1
Bi, Q1
Regensteiner, JG1
Ware, JE1
McCarthy, WJ1
Zhang, P1
Forbes, WP1
Heckman, J1
Hiatt, WR1

Clinical Trials (1)

Trial Overview

TrialPhaseEnrollmentStudy TypeStart DateStatus
Evaluation of Cilostazol in Combination With L-Carnitine in Subjects With Intermittent Claudication[NCT00822172]Phase 4164 participants (Actual)Interventional2008-09-30Completed
[information is prepared from clinicaltrials.gov, extracted Sep-2024]

Trial Outcomes

Change From Baseline in Claudication Onset Time at Day 180

Subjects were asked to complete a standardized exercise treadmill test using a modified Gardner protocol. Subjects walked on the treadmill until they were physically unable to walk further either as a result of their peripheral artery disease (PAD) symptoms or other non-PAD symptoms. The time during the conduct of the exercise treadmill test at which the subject first reported claudication symptoms is referred to as the claudication onset time (COT) and reported in minutes/seconds. The exercise treadmill test was conducted at Screening, Baseline, Day 90, and Day 180 visits. The log transformation is used to make highly skewed distributions less skewed. (NCT00822172)
Timeframe: Baseline, Day 180

InterventionLog Minutes (Mean)
Cilostazol + L-Carnitine1.065
Cilostazol + Placebo0.896

Change From Baseline in Claudication Onset Time at Day 90

Subjects were asked to complete a standardized exercise treadmill test using a modified Gardner protocol. Subjects walked on the treadmill until they were physically unable to walk further either as a result of their peripheral artery disease (PAD) symptoms or other non-PAD symptoms. The time during the conduct of the exercise treadmill test at which the subject first reported claudication symptoms is referred to as the claudication onset time (COT) and reported in minutes/seconds. The exercise treadmill test was conducted at Screening, Baseline, Day 90, and Day 180 visits. The log transformation is used to make highly skewed distributions less skewed. (NCT00822172)
Timeframe: Baseline, Day 90

InterventionLog Minutes (Mean)
Cilostazol + L-Carnitine1.001
Cilostazol + Placebo0.815

Change From Baseline in Peak Walking Time (PWT) at Day 180

Subjects were asked to complete a standardized exercise treadmill test using a modified Gardner protocol. Subjects walked on the treadmill until they were physically unable to walk further either as a result of their peripheral artery disease (PAD) symptoms or other non-PAD symptoms. This maximum time walked is referred to as the peak walking time (PWT) and reported in minutes/seconds. The exercise treadmill test was conducted at Screening, Baseline, Day 90, and Day 180 visits. The log transformation is used to make highly skewed distributions less skewed. (NCT00822172)
Timeframe: Baseline, Day 180

InterventionLog Minutes (Mean)
Cilostazol + L-Carnitine0.241
Cilostazol + Placebo0.134

Change From Baseline in Peak Walking Time at Day 180

Subjects were asked to complete a standardized exercise treadmill test using a modified Gardner protocol. Subjects walked on the treadmill until they were physically unable to walk further either as a result of their peripheral artery disease (PAD) symptoms or other non-PAD symptoms. This maximum time walked is referred to as the peak walking time (PWT) and reported in minutes/seconds. The exercise treadmill test was conducted at Screening, Baseline, Day 90, and Day 180 visits. The log transformation is used to make highly skewed distributions less skewed. (NCT00822172)
Timeframe: Baseline, Day 180

InterventionLog Minutes (Mean)
Cilostazol + L-Carnitine0.267
Cilostazol + Placebo0.145

Change From Baseline in Peak Walking Time at Day 90

Subjects were asked to complete a standardized exercise treadmill test using a modified Gardner protocol. Subjects walked on the treadmill until they were physically unable to walk further either as a result of their peripheral artery disease (PAD) symptoms or other non-PAD symptoms. This maximum time walked is referred to as the peak walking time (PWT) and reported in minutes/seconds. The exercise treadmill test was conducted at Screening, Baseline, Day 90, and Day 180 visits. The log transformation is used to make highly skewed distributions less skewed. (NCT00822172)
Timeframe: Baseline, Day 90

InterventionLog Minutes (Mean)
Cilostazol + L-Carnitine0.166
Cilostazol + Placebo0.139

Change From Baseline in Walking Impairment Questionnaire for Walking Distance at Day 180

Subjects completed the Walking Impairment Questionnaire (WIQ) whereby they were asked about their maximal walking distance before having to rest as a result of claudication symptoms associated with their peripheral artery disease (PAD). The WIQ was administered at the Baseline, Day 90, and Day 180 visits. On the WIQ subjects were asked a series of questions related to their degree of physical difficulty that best described how hard it was for the subject to walk on level ground without stopping to rest. The questions began by asking the degree of difficulty walking around indoors, then 50 feet, 150 feet, 300 feet, 600 feet, 900 feet, and lastly 1500 feet. The responses range from None (best outcome) to Slight, then Some, then Much, then lastly Unable (worst outcome). The walking distance score was calculated from the 7 questions in the section by way of a weighted sum. A score of 100 indicated no walking impairment. A score of 0 corresponded to the highest degree of walking impairment (NCT00822172)
Timeframe: Baseline, Day 180

Interventionscore on a scale (Mean)
Cilostazol + L-Carnitine13.20
Cilostazol + Placebo6.57

Change From Baseline in Walking Impairment Questionnaire for Walking Distance at Day 90

Subjects completed the Walking Impairment Questionnaire (WIQ) whereby they were asked about their maximal walking distance before having to rest as a result of claudication symptoms associated with their peripheral artery disease (PAD). The WIQ was administered at the Baseline, Day 90, and Day 180 visits. On the WIQ subjects were asked a series of questions related to their degree of physical difficulty that best described how hard it was for the subject to walk on level ground without stopping to rest. The questions began by asking the degree of difficulty walking around indoors, then 50 feet, 150 feet, 300 feet, 600 feet, 900 feet, and lastly 1500 feet. The responses range from None (best outcome) to Slight, then Some, then Much, then lastly Unable (worst outcome). The walking distance score was calculated from the 7 questions in the section by way of a weighted sum. A score of 100 indicated no walking impairment. A score of 0 corresponded to the highest degree of walking impairment (NCT00822172)
Timeframe: Baseline, Day 90

Interventionscore on a scale (Mean)
Cilostazol + L-Carnitine12.98
Cilostazol + Placebo10.01

Reviews

2 reviews available for cilostazol and Arterial Brain Diseases

ArticleYear
Systematic study of cilostazol on secondary stroke prevention: a meta-analysis.
    European journal of medical research, 2013, Dec-06, Volume: 18

    Topics: Aspirin; Brain Ischemia; Cilostazol; Clinical Trials as Topic; Disease Progression; Humans; Incidenc

2013
Effect of cilostazol on treadmill walking, community-based walking ability, and health-related quality of life in patients with intermittent claudication due to peripheral arterial disease: meta-analysis of six randomized controlled trials.
    Journal of the American Geriatrics Society, 2002, Volume: 50, Issue:12

    Topics: Aged; Cilostazol; Exercise Test; Humans; Intermittent Claudication; Intracranial Arterial Diseases;

2002