cicaprost has been researched along with Cardiomegaly* in 2 studies
2 other study(ies) available for cicaprost and Cardiomegaly
Article | Year |
---|---|
Augmented cardiac hypertrophy in response to pressure overload in mice lacking the prostaglandin I2 receptor.
In the heart, the expressions of several types of prostanoid receptors have been reported. However, their roles in cardiac hypertrophy in vivo remain unknown. We intended to clarify the roles of these receptors in pressure overload-induced cardiac hypertrophy using mice lacking each of their receptors.. We used a model of pressure overload-induced cardiac hypertrophy produced by banding of the transverse aorta in female mice. In wild-type mice subjected to the banding, cardiac hypertrophy developed during the observation period of 8 weeks. In mice lacking the prostaglandin (PG) I2 receptor (IP(-/-)), however, cardiac hypertrophy and cardiomyocyte hypertrophy were significantly greater than in wild-type mice at 2 and 4 weeks but not at 8 weeks, whereas there was no such augmentation in mice lacking the prostanoid receptors other than IP. In addition, cardiac fibrosis observed in wild-type hearts was augmented in IP(-/-) hearts, which persisted for up to 8 weeks. In IP(-/-) hearts, the expression level of mRNA for atrial natriuretic peptide, a representative marker of cardiac hypertrophy, was significantly higher than in wild-type hearts. In vitro, cicaprost, an IP agonist, reduced platelet-derived growth factor-induced proliferation of wild-type noncardiomyocytes, although it could not inhibit cardiotrophin-1-induced hypertrophy of cardiomyocytes. Accordingly, cicaprost increased cAMP concentration efficiently in noncardiomyocytes.. IP plays a suppressive role in the development of pressure overload-induced cardiac hypertrophy via the inhibition of both cardiomyocyte hypertrophy and cardiac fibrosis. Both effects have been suggested as originating from the action on noncardiomyocytes rather than cardiomyocytes. Topics: Animals; Biomarkers; Cardiomegaly; Cell Enlargement; Cyclic AMP; Disease Models, Animal; Epoprostenol; Female; Fibrosis; Hypertension; Mice; Mice, Knockout; Myocytes, Cardiac; Receptors, Epoprostenol; RNA, Messenger | 2005 |
Activation of IP prostanoid receptors prevents cardiomyocyte hypertrophy via cAMP-dependent signaling.
The antihypertrophic action of angiotensin-converting enzyme inhibitors in the heart results partly from local potentiation of bradykinin. We have demonstrated that the antihypertrophic action of bradykinin is mediated by the release of nitric oxide from endothelium and elevation of cardiomyocyte cGMP. Whether other paracrine factors derived from the coronary endothelium, such as prostacyclin (PGI2), may act to prevent hypertrophy has not been explored. In the vasculature, activation by PGI2 of IP and EP1 prostanoid receptors elicits vasodilatation (via cAMP-dependent signaling) and vasoconstriction, respectively. The present objective was to determine whether IP prostanoid receptor activation has antihypertrophic actions in adult rat cardiomyocytes (ARCM). The selective IP agonist cicaprost (1 microM) virtually abolished the increase in [3H]phenylalanine incorporation (a marker of hypertrophy) induced either by endothelin-1 (ET-1; 60 nM, n = 10, P < 0.005) or by angiotensin II (1 microM, n = 6, P < 0.005). Cicaprost also inhibited ET-1 induction of c-fos mRNA expression, an additional marker of hypertrophy in ARCM (n = 5, P < 0.005). In the absence of hypertrophic stimuli, cicaprost alone did not significantly influence either marker. The antihypertrophic actions of cicaprost were mimicked by the dual IP/EP1 agonist iloprost (1 microM) in the presence of the EP1 antagonist AH-6809 (3 microM). Furthermore, cicaprost modestly but significantly increased cardiomyocyte cAMP content by 13 +/- 6% (P < 0.05, n = 4), and the antihypertrophic effect of cicaprost was lost in the presence of the cAMP-dependent protein kinase inhibitor H-89 (1 microM, n = 5, P < 0.05). However, ET-1 also induced increases in the activity of the intracellular growth signals ERK1 (by 3-fold) and ERK2 (by 5-fold) in ARCM, and these were not inhibited by cicaprost (P < 0.01, n = 5). Activation of IP receptors thus represents a novel approach to prevention of hypertrophy, and this effect is linked to cAMP-dependent signaling. Topics: Angiotensin II; Animals; Biomarkers; Cardiomegaly; Cyclic AMP; Endothelin-1; Epoprostenol; Iloprost; Male; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Mitogen-Activated Protein Kinases; Myocytes, Cardiac; Rats; Rats, Sprague-Dawley; Receptors, Epoprostenol; Receptors, Prostaglandin; Signal Transduction | 2004 |