chymostatin and Disease-Models--Animal

chymostatin has been researched along with Disease-Models--Animal* in 4 studies

Other Studies

4 other study(ies) available for chymostatin and Disease-Models--Animal

ArticleYear
Protective Effects of Chymostatin on Paraquat-Induced Acute Lung Injury in Mice.
    Inflammation, 2018, Volume: 41, Issue:1

    This study aims to evaluate the role of chymostatin in paraquat-induced acute lung injury. Institute of Cancer Research mice were randomly distributed into the NS, DMSO, chymostatin, paraquat or chymostatin treatment groups. Six mice from each group were intraperitoneally injected with chloral hydrate at 0, 1, 2, 4, 8, 12, 24 and 48 h after treatment administration. Blood samples were collected through cardiac puncture. Lung tissues were stained with haematoxylin and eosin for the observation of lung histology. The degree of pulmonary oedema was determined on the basis of lung wet-to-dry ratio (W/D). The serum activity of cathepsin G was determined through substrate fluorescence assay. The serum levels of endothelial cell-specific molecule-1 (endocan), tumour necrosis factor-a (TNF-a), interleukin-1β (IL-1β), IL-6 and high-mobility group box protein 1 (HMGB1) were determined through enzyme-linked immunosorbent assay. The expression levels of endocan and nuclear NF-κBp65 in the lung were quantified through Western blot. Chymostatin alleviated the pathological changes associated with acute alveolitis in mice; decreased the lung W/D ratio, the activity of cathepsin G and the serum concentrations of TNF-a, IL-1β, IL-6 and HMGB1; and increased the serum concentration of endocan. Western blot results revealed that chymostatin up-regulated endocan expression and down-regulated nuclear NF-κBp65 expression in the lung. Chymostatin reversed the inflammatory effects of paraquat-induced lung injury by inhibiting cathepsin G activity to up-regulate endocan expression and indirectly inhibit NF-κBp65 activity.

    Topics: Acute Lung Injury; Animals; Anti-Inflammatory Agents; Cathepsin G; Cytokines; Cytoprotection; Disease Models, Animal; Female; HMGB1 Protein; Inflammation Mediators; Lung; Mice, Inbred ICR; Oligopeptides; Paraquat; Proteoglycans; Pulmonary Edema; Time Factors; Transcription Factor RelA

2018
Primacy of angiotensin converting enzyme in angiotensin-(1-12) metabolism.
    American journal of physiology. Heart and circulatory physiology, 2013, Sep-01, Volume: 305, Issue:5

    Angiotensin-(1-12) [ANG-(1-12)], a new member of the renin-angiotensin system, is recognized as a renin independent precursor for ANG II. However, the processing of ANG-(1-12) in the circulation in vivo is not fully established. We examined the effect of angiotensin converting enzyme (ACE) and chymase inhibition on angiotensin peptides formation during an intravenous infusion of ANG-(1-12) in normotensive Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR). WKY and SHR were assigned to a short ANG-(1-12) infusion lasting 5, 15, 30, or 60 min (n = 4-10 each group). In another experiment WKY and SHR were assigned to a continuous 15-min ANG-(1-12) infusion with pretreatment of saline, lisinopril (10 mg/kg), or chymostatin (10 mg/kg) (n = 7-13 each group). Saline or lisinopril were infused intravenously 15 min before the administration of ANG-(1-12) (2 nmol·kg(-1)·min(-1)), whereas chymostatin was given by bolus intraperitoneal injection 30 min before ANG-(1-12). Infusion of ANG-(1-12) increased arterial pressure and plasma ANG-(1-12), ANG I, ANG II, and ANG-(1-7) levels in WKY and SHR. Pretreatment with lisinopril caused increase in ANG-(1-12) and ANG I and large decreases in ANG II compared with the other two groups in both strains. Pretreatment of chymostatin had no effect on ANG-(1-12), ANG I, and ANG II levels in both strains, whereas it increased ANG-(1-7) levels in WKY. We conclude that ACE acts as the primary enzyme for the conversion of ANG-(1-12) to smaller angiotensin peptides in the circulation of WKY and SHR and that chymase may be an ANG-(1-7) degrading enzyme.

    Topics: Angiotensin I; Angiotensin-Converting Enzyme Inhibitors; Angiotensinogen; Animals; Blood Pressure; Chymases; Disease Models, Animal; Hypertension; Infusions, Intravenous; Lisinopril; Male; Oligopeptides; Peptide Fragments; Peptidyl-Dipeptidase A; Rats; Rats, Inbred SHR; Rats, Inbred WKY

2013
Role of chymase in cigarette smoke-induced pulmonary artery remodeling and pulmonary hypertension in hamsters.
    Respiratory research, 2010, Mar-31, Volume: 11

    Cigarette smoking is an important risk factor for pulmonary arterial hypertension (PAH) in chronic obstructive pulmonary disease (COPD). Chymase has been shown to function in the enzymatic production of angiotensin II (AngII) and the activation of transforming growth factor (TGF)-beta1 in the cardiovascular system. The aim of this study was to determine the potential role of chymase in cigarette smoke-induced pulmonary artery remodeling and PAH.. Hamsters were exposed to cigarette smoke; after 4 months, lung morphology and tissue biochemical changes were examined using immunohistochemistry, Western blotting, radioimmunoassay and reverse-transcription polymerase chain reaction.. Our results show that chronic cigarette smoke exposure significantly induced elevation of right ventricular systolic pressures (RVSP) and medial hypertrophy of pulmonary arterioles in hamsters, concurrent with an increase of chymase activity and synthesis in the lung. Elevated Ang II levels and enhanced TGF-beta1/Smad signaling activation were also observed in smoke-exposed lungs. Chymase inhibition with chymostatin reduced the cigarette smoke-induced increase in chymase activity and Ang II concentration in the lung, and attenuated the RVSP elevation and the remodeling of pulmonary arterioles. Chymostatin did not affect angiotensin converting enzyme (ACE) activity in hamster lungs.. These results suggest that chronic cigarette smoke exposure can increase chymase activity and expression in hamster lungs. The capability of activated chymase to induce Ang II formation and TGF-beta1 signaling may be part of the mechanism for smoking-induced pulmonary vascular remodeling. Thus, our study implies that blockade of chymase might provide benefits to PAH smokers.

    Topics: Angiotensin II; Animals; Blotting, Western; Chymases; Cricetinae; Disease Models, Animal; Enzyme Activation; Gene Expression Regulation, Enzymologic; Hypertension, Pulmonary; Hypertrophy; Immunoassay; Immunohistochemistry; Male; Oligopeptides; Pulmonary Artery; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Serine Proteinase Inhibitors; Signal Transduction; Smad Proteins; Smoking; Time Factors; Transforming Growth Factor beta1; Up-Regulation; Ventricular Function, Right; Ventricular Pressure

2010
Effects of proteinase inhibitors on the cutaneous lesion of Sporothrix schenckii inoculated hairless mice.
    Mycopathologia, 1993, Volume: 123, Issue:2

    Sporothrix schenckii produces two extracellular proteinases, namely proteinase I and II. Proteinase I is a serine proteinase, inhibited by chymostatin. On the other hand, proteinase II is an aspartic proteinase, inhibited by pepstatin. The addition of either pepstatin or chymostatin to the culture medium did not inhibit cell growth, however the addition of both inhibitors strongly inhibited fungal growth. Accordingly, this suggested that extracellular proteinases play an important role in cell growth and that such cell growth may be suppressed if these proteinases are inhibited. In order to substantiate this speculation in sporotrichosis, the effects of proteinase inhibitors on the cutaneous lesions of mice were studied. Ointments containing 0.1% chymostatin, 0.1% pepstatin and 0.1% chymostatin-0.1% pepstatin were applied twice daily on the inoculation sites of hairless mouse skin, and the time courses of the lesions examined. The inhibitory effect in vivo on S. schenckii was similar to that demonstrated in our previous in vitro study. Compared to the control, the time course curve of the number of nodules present after the application of either pepstatin or chymostatin was slightly suppressed. The application of both pepstatin and chymostatin, however, strongly suppressed nodule formation. This study not only confirmed the role of 2 proteinases of S, schenckii for fungal growth in vivo, but also may lead to their use as new topical therapeutic agents.

    Topics: Animals; Disease Models, Animal; Female; Mice; Mice, Hairless; Mice, Inbred ICR; Oligopeptides; Pepstatins; Protease Inhibitors; Sporothrix; Sporotrichosis

1993