chrysin and Hypothyroidism

chrysin has been researched along with Hypothyroidism* in 2 studies

Other Studies

2 other study(ies) available for chrysin and Hypothyroidism

ArticleYear
Chrysin restores memory deficit in hypothyroidism mice: Behavioral, neurochemical and computational approaches involving the neurotrophinergic system.
    Journal of psychiatric research, 2021, Volume: 144

    Hypothyroidism is a condition that affects multiple systems, including the central nervous system, causing, for example, cognitive deficits closely related to Alzheimer's disease. The flavonoid chrysin is a natural compound associated with neuronal improvement in several experimental models. Here, we evaluated the effect of chrysin on cognitive impairment in hypothyroid female mice by exploring neuroplasticity. Hypothyroidism was induced by continuous exposure to 0.1% methimazole (MTZ) in drinking water for 31 days. On the 32nd day, the animals showed low plasma levels of thyroid hormones (hypothyroid mice) than the control group (euthyroid mice). Subsequently, mice were intragastrically administered with vehicle or chrysin (20 mg/kg) once a day for 28 consecutive days. At the end of the treatments, behavioral tests were performed: open-field test (OFT) and morris water maze (MWM). Then, the levels of neurotrophins (BDNF and NGF) in the hippocampus and prefrontal cortex were measured and tested the affinity of chrysin with neurotrophinergic receptors through molecular docking. Hypothyroid mice showed memory deficit in the MWM and reduced neurotrophins levels in the hippocampus and prefrontal cortex, meanwhile, the chrysin treatment was able to reversed the deficit of spatial memory function and increased the levels of BDNF in hipocamppus and NGF in both structures. Additionally, molecular docking analysis showed that chrysin potentially binds to the active site of the TrkA, TrkB, and p75NTR receptors. Together, these findings suggest that chrysin reversed behavioral and neurochemical alterations associated with memory deficit induced by hypothyroidism, possibly by modulating synaptic plasticity in the neurotrophinergic system.

    Topics: Animals; Female; Flavonoids; Hippocampus; Hypothyroidism; Maze Learning; Memory Disorders; Mice; Molecular Docking Simulation

2021
Chrysin reverses the depressive-like behavior induced by hypothyroidism in female mice by regulating hippocampal serotonin and dopamine.
    European journal of pharmacology, 2018, Mar-05, Volume: 822

    Hypothyroidism is often associated with psychiatric disorders such as depression. In this study, we evaluated the effect of chrysin on depressive-like behavior and monoamine levels in hypothyroid female mice. Hypothyroidism was induced by continuous exposure to 0.1% methimazole (MTZ) in drinking water for 31 days. Exposure to MTZ was associated with low plasma levels of thyroid hormones T3 and T4 compared with the control group. Subsequently, euthyroid and MTZ-induced hypothyroid mice were intragastrically administered vehicle or chrysin (20mg/kg) once a day for 28 consecutive days. After treatments, the following behavioral assessments were performed: Open-Field Test (OFT), Tail suspension test (TST), and Forced Swimming Test (FST). Additionally, T3 and T4 levels were measured again, and serotonin (5HT), dopamine, and noradrenaline levels were analyzed in the prefrontal cortex and the hippocampus. Chrysin treatment could not reverse T3 and T4 levels. Hypothyroid mice showed an increased immobility time in TST and FST; chrysin treatment reversed these effects. Reduced levels of 5HT and dopamine in the prefrontal cortex and the hippocampus were observed in the hypothyroid mice than in the euthyroid mice. Chrysin treatment recovered 5HT content in both structures and dopamine content only in the hippocampus. Noradrenaline content was not altered by treatments. Together, our results have demonstrated that chrysin treatment reverses depressive-like behaviors in hypothyroid female mice and suggests the involvement of 5HT and dopamine in these effects.

    Topics: Animals; Behavior, Animal; Depression; Dopamine; Female; Flavonoids; Hippocampus; Hypothyroidism; Mice; Prefrontal Cortex; Serotonin; Thyroid Hormones

2018