chondroitin-sulfates and Pancreatic-Neoplasms

chondroitin-sulfates has been researched along with Pancreatic-Neoplasms* in 7 studies

Other Studies

7 other study(ies) available for chondroitin-sulfates and Pancreatic-Neoplasms

ArticleYear
Evaluation of Malarial Var2CSA-Displaying Baculovirus Vector in Transduction Efficiency in Human Cancer Cells.
    Biological & pharmaceutical bulletin, 2023, Volume: 46, Issue:3

    Baculovirus vectors (BVs) are able to use for gene transduction in mammalian cells and are recognized as growing viral vectors for cancer gene therapy applications. The transduction efficiency of BVs varies among cancer cell types. To improve the transduction efficiency of BVs in human cancer cells, BV displaying malarial variant surface antigen 2-chondroitin sulfate A (var2CSA) molecules was developed in this study. Var2CSA plays a critical role in the sequestration of Plasmodium falciparum-infected erythrocytes in the placenta. Moreover, var2CSA binds to cancer cells via placenta-like chondroitin sulfate A (CSA), but not to non-cancer cells. Var2CSA BV showed significantly higher gene transduction than control BV in HepG2 and Huh7 cells, human hepatic cancer cells as well as AsPC-1 cells, human pancreatic cancer cells. The transduction efficiency of var2CSA BV was significantly inhibited by the anti-gp64 antibody, free heparin, and CSA. The results of this study suggest that var2CSA BV would be an improved vector for cancer gene therapies, especially in the treatment of hepatic and pancreatic cancers.

    Topics: Animals; Antigens, Surface; Baculoviridae; Cell Line, Tumor; Chondroitin Sulfates; Female; Genetic Vectors; Humans; Liver Neoplasms; Malaria; Pancreatic Neoplasms; Pregnancy; Transduction, Genetic

2023
Exploring the sulfate patterns of chondroitin sulfate/dermatan sulfate and keratan sulfate in human pancreatic cancer.
    Journal of pharmaceutical and biomedical analysis, 2021, Oct-25, Volume: 205

    This study was designed to explore the sulfation patterns of chondroitin sulfate (CS)/dermatan sulfate (DS), and keratan sulfate (KS) and the expression of carbohydrate sulfotransferases (CHSTs) in 26 pancreatic tumor and normal tissues. CS/DS and KS profiles were simultaneously determined. Pancreatic tumor tissues exhibited increased ΔDi-0S, ΔDi-4S, and ΔDi-6S levels, with absolute ΔDi-4S content being highest, followed by ΔDi-6S. However, as for the contents of KS-6S and KS-6S,6'S, there were no significant regular change. The expression levels of CHST1 and CHST4 were 37 and 15 times higher than those in normal tissues. PCA and OPLS-DA revealed that ΔDi-4S and ΔDi-6S levels could be reliably used to differentiate between healthy and cancerous tissues. The up-regulation of CHST3, CHST12, CHST13, and CHST15 was directly correlated with C-4 and C-6 sulfation. These data provide a foundation for future studies of the role of ΔDi-4S and ΔDi-6S in the progression of pancreatic cancer.

    Topics: Chondroitin Sulfates; Dermatan Sulfate; Humans; Keratan Sulfate; Membrane Glycoproteins; Pancreatic Neoplasms; Sulfates; Sulfotransferases

2021
Sunitinib-Loaded Chondroitin Sulfate Hydrogels as a Novel Drug-Delivery Mechanism for the Treatment of Pancreatic Neuroendocrine Tumors.
    Annals of surgical oncology, 2021, Volume: 28, Issue:13

    Pancreatic neuroendocrine tumors (PanNETs) are increasingly common. Experts debate whether small tumors should be resected. Tumor destruction via injection of cytotoxic agents could offer a minimal invasive approach to this controversy. We hypothesize that a new drug delivery system comprising chondroitin sulfate (CS) hydrogels loaded with sunitinib (SUN) suppresses tumor growth in PanNET cells.. Injectable hydrogels composed of CS modified with methacrylate groups (MA) were fabricated and loaded with SUN. Loading target was either 200 µg (SUN200-G) or 500 µg (SUN500-G) as well as sham hydrogel with no drug loading (SUN0-G). SUN release from hydrogels was monitored in vitro over time and cytotoxicity induced by the released SUN was evaluated using QGP-1 and BON1 PanNET cell lines. QGP-1 xenografts were developed in 35 mice and directly injected with 25 µL of either SUN200-G, SUN500-G, SUN0-G, 100 µL of Sunitinib Malate (SUN-inj), or given 40 mg/kg/day oral sunitinib (SUN-oral).. SUN-loaded CSMA hydrogel retained complete in vitro cytotoxicity toward the QGP-1 PanNET and BON-1 PanNET cell lines for 21 days. Mouse xenograft models with QGP-1 PanNETs showed a significant delay in tumor growth in the SUN200/500-G, SUN-inj and SUN-oral groups compared with SUN0-G (p = 0.0014). SUN500-G hydrogels induced significantly more tumor necrosis than SUN0-G (p = 0.04). There was no difference in tumor growth delay between SUN200/500G, SUN-inj, and SUN-oral.. This study demonstrates that CSMA hydrogels loaded with SUN suppress PanNETs growth. This drug delivery could approach represents a novel way to treat PanNETs and other neoplasms via intratumoral injection.

    Topics: Animals; Cell Line, Tumor; Chondroitin Sulfates; Drug Delivery Systems; Hydrogels; Mice; Neuroendocrine Tumors; Pancreatic Neoplasms; Sunitinib

2021
Oncofetal Chondroitin Sulfate Glycosaminoglycans Are Key Players in Integrin Signaling and Tumor Cell Motility.
    Molecular cancer research : MCR, 2016, Volume: 14, Issue:12

    Many tumors express proteoglycans modified with oncofetal chondroitin sulfate glycosaminoglycan chains (ofCS), which are normally restricted to the placenta. However, the role of ofCS in cancer is largely unknown. The function of ofCS in cancer was analyzed using the recombinant ofCS-binding VAR2CSA protein (rVAR2) derived from the malaria parasite, Plasmodium falciparum We demonstrate that ofCS plays a key role in tumor cell motility by affecting canonical integrin signaling pathways. Binding of rVAR2 to tumor cells inhibited the interaction of cells with extracellular matrix (ECM) components, which correlated with decreased phosphorylation of Src kinase. Moreover, rVAR2 binding decreased migration, invasion, and anchorage-independent growth of tumor cells in vitro Mass spectrometry of ofCS-modified proteoglycan complexes affinity purified from tumor cell lines on rVAR2 columns revealed an overrepresentation of proteins involved in cell motility and integrin signaling, such as integrin-β1 (ITGB1) and integrin-α4 (ITGA4). Saturating concentrations of rVAR2 inhibited downstream integrin signaling, which was mimicked by knockdown of the core chondroitin sulfate synthesis enzymes β-1,3-glucuronyltransferase 1 (B3GAT1) and chondroitin sulfate N-acetylgalactosaminyltransferase 1 (CSGALNACT1). The ofCS modification was highly expressed in both human and murine metastatic lesions in situ and preincubation or early intravenous treatment of tumor cells with rVAR2 inhibited seeding and spreading of tumor cells in mice. This was associated with a significant increase in survival of the animals. These data functionally link ofCS modifications with cancer cell motility and further highlights ofCS as a novel therapeutic cancer target.. The cancer-specific expression of ofCS aids in metastatic phenotypes and is a candidate target for therapy. Mol Cancer Res; 14(12); 1288-99. ©2016 AACR.

    Topics: Animals; Antigens, Protozoan; Carcinoma, Lewis Lung; Cell Line, Tumor; Chondroitin Sulfates; Humans; Integrins; Melanoma, Experimental; Mice; Neoplasm Metastasis; Neoplasms; Pancreatic Neoplasms; Signal Transduction

2016
Chondroitin sulfate E fragments enhance CD44 cleavage and CD44-dependent motility in tumor cells.
    Cancer research, 2008, Sep-01, Volume: 68, Issue:17

    During tumor cell invasion, certain extracellular matrix (ECM) components such as hyaluronan (HA) are degraded into small oligosaccharides, which are detected in patients. We previously reported that such HA oligosaccharides induce the proteolytic cleavage of an ECM-binding molecule CD44 from tumor cells and promote tumor cell migration in a CD44-dependent manner. Here, we report that chondroitin sulfate E (CSE), another component of the tumor ECM, strongly enhances CD44 cleavage and tumor cell motility when degraded into oligosaccharides. CSE and its degradation products were detected in pancreatic ductal adenocarcinoma. In CD44-expressing pancreatic tumor cells, degraded forms of CSE but not intact CSE enhanced CD44 cleavage; enzymatic digestion of such low-molecular weight CSE (LMW-CSE) abrogated this enhancement. Among the LMW-CSE preparations examined, 3-kDa CSE most potently induced CD44 cleavage. Nuclear magnetic resonance analysis showed that the 3-kDa-CSE bound to CD44, and that blocking such binding abrogated the CD44 cleavage induction. LMW-CSE also induced prominent filopodia formation and cytoskeletal changes in tumor cells; these effects were also abrogated by blocking the LMW-CSE binding to CD44. Chemically synthesized CSE hexasaccharides also enhanced the CD44 cleavage and tumor cell motility in a CD44-dependent manner. We conclude that the degraded forms of CSE modulate cell adhesion and migration by interacting with tumor-cell CD44, suggesting that the degradation products of tumor-associated ECMs that interact with CD44 play a significant role in CD44-mediated tumor progression.

    Topics: Animals; Cell Line, Tumor; Cell Movement; Chondroitin Sulfates; Chromatography, Gel; Enzyme-Linked Immunosorbent Assay; Humans; Hyaluronan Receptors; Immunohistochemistry; Magnetic Resonance Spectroscopy; Mice; Mice, Inbred BALB C; Mice, Nude; Pancreatic Neoplasms

2008
Pancreatic carcinoma is characterized by elevated content of hyaluronan and chondroitin sulfate with altered disaccharide composition.
    Biochimica et biophysica acta, 2000, Oct-18, Volume: 1502, Issue:2

    The amount and the types of glycosaminoglycans (GAGs) present in human pancreatic carcinoma were examined and compared with those in normal pancreas. Human pancreatic carcinoma contained increased levels (4-fold) of total GAGs. Particularly, this carcinoma is characterized by a 12-fold increase of hyaluronan (HA) and a 22-fold increase in chondroitin sulfate (CS) content. CS in pancreatic carcinoma exhibited an altered disaccharide composition which is associated with marked increase of non-sulfated and 6-sulfated disaccharides. Dermatan sulfate (DS) was also increased (1.5-fold) in carcinoma, whereas heparan sulfate (HS), the major GAG of normal pancreas, becomes the minor GAG in pancreatic carcinoma without significant changes in the content and in molecular size. In all cases, the galactosaminoglycans (GalGAGs, i.e. CS and DS) derived from pancreatic carcinomas were of lower molecular size compared to those from normal pancreas. The results in this study indicate, for the first time, that human pancreatic carcinoma is characterized by highly increased amounts of HA and of a structurally altered CS.

    Topics: Carbohydrate Sequence; Chondroitin Sulfates; Dermatan Sulfate; Disaccharides; Heparitin Sulfate; Humans; Hyaluronic Acid; Molecular Weight; Pancreas; Pancreatic Neoplasms; Polysaccharides

2000
Chemical modifications of heparin that diminish its anticoagulant but preserve its heparanase-inhibitory, angiostatic, anti-tumor and anti-metastatic properties.
    Glycobiology, 1996, Volume: 6, Issue:3

    Structural features of heparin potentially important for heparanase-inhibitory activity were examined by measuring the ability of heparin derivatives to affect the degradation of [3H]acetylated heparan sulphate by tumor cell heparanases. IC50 values were determined using an assay which distinguished degraded from undegraded substrate by precipitation of the latter with cetylpyridinium chloride (CPC). Removal of heparin's 2-O-sulphate and 3-O-sulphate groups enhanced heparanase-inhibitory activity (50%). Removal of its carboxyl groups slightly lowered the activity (18%), while combining the treatments abolished the activity. At least one negative charge on the iduronic acid/idose moiety, therefore, is necessary for heparanase-inhibitory activity. Replacing heparin's N-sulphate groups with N-acetyl groups reduced its activity (37%). Comparing this heparin derivative with 2,3-O-desulphated heparin, the placement of sulphate groups appears important for activity since the two structures have similar nominal linear charge density. In addition, unsubstituted uronic acids are nonessential for inhibition since their modification (periodate-oxidation/borohydride-reduction) enhanced rather than reduced heparanase-inhibitory activity. The most effective heparanase inhibitors (2,3-O-desulphated heparin, and [periodate-oxidized, borohydride-reduced] heparin) were tested in the chick chorioallantoic membrane (CAM) bioassay for anti-angiogenic activity and found to be at least as efficacious as heparin. 2,3-O-desulphated heparin also significantly decreased the tumor growth of a subcutaneous human pancreatic (Ca-Pan-2) adenocarcinoma in nude mice and prolonged the survival times of C57BL/6N mice in a B16-F10 melanoma experimental lung metastasis assay.

    Topics: Animals; Anticoagulants; Antineoplastic Agents; Chick Embryo; Chondroitin Sulfates; Enzyme Inhibitors; Female; Glucuronidase; Glycoside Hydrolases; Heparin; Heparitin Sulfate; Humans; Lung Neoplasms; Male; Melanoma, Experimental; Mice; Mice, Inbred C57BL; Mice, Nude; Molecular Structure; Neoplasm Metastasis; Neoplasms, Experimental; Neovascularization, Physiologic; Pancreatic Neoplasms

1996