chondroitin-sulfates and Ehlers-Danlos-Syndrome

chondroitin-sulfates has been researched along with Ehlers-Danlos-Syndrome* in 5 studies

Reviews

1 review(s) available for chondroitin-sulfates and Ehlers-Danlos-Syndrome

ArticleYear
Biological functions of iduronic acid in chondroitin/dermatan sulfate.
    The FEBS journal, 2013, Volume: 280, Issue:10

    The presence of iduronic acid in chondroitin/dermatan sulfate changes the properties of the polysaccharides because it generates a more flexible chain with increased binding potentials. Iduronic acid in chondroitin/dermatan sulfate influences multiple cellular properties, such as migration, proliferation, differentiation, angiogenesis and the regulation of cytokine/growth factor activities. Under pathological conditions such as wound healing, inflammation and cancer, iduronic acid has diverse regulatory functions. Iduronic acid is formed by two epimerases (i.e. dermatan sulfate epimerase 1 and 2) that have different tissue distribution and properties. The role of iduronic acid in chondroitin/dermatan sulfate is highlighted by the vast changes in connective tissue features in patients with a new type of Ehler-Danlos syndrome: adducted thumb-clubfoot syndrome. Future research aims to understand the roles of the two epimerases and their interplay with the sulfotransferases involved in chondroitin sulfate/dermatan sulfate biosynthesis. Furthermore, a better definition of chondroitin/dermatan sulfate functions using different knockout models is needed. In this review, we focus on the two enzymes responsible for iduronic acid formation, as well as the role of iduronic acid in health and disease.

    Topics: Amino Acid Motifs; Animals; Antigens, Neoplasm; Carbohydrate Epimerases; Carcinoma, Squamous Cell; Cell Movement; Chondroitin Sulfates; Dermatan Sulfate; DNA-Binding Proteins; Ehlers-Danlos Syndrome; Extracellular Matrix; Eye Abnormalities; Foot Deformities, Congenital; Hand Deformities, Congenital; Humans; Iduronic Acid; Joint Instability; Molecular Conformation; Neoplasm Proteins; Skin Abnormalities; Stem Cells; Sulfotransferases; Thumb

2013

Other Studies

4 other study(ies) available for chondroitin-sulfates and Ehlers-Danlos-Syndrome

ArticleYear
Delineation of musculocontractural Ehlers-Danlos Syndrome caused by dermatan sulfate epimerase deficiency.
    Molecular genetics & genomic medicine, 2020, Volume: 8, Issue:5

    Musculocontractural Ehlers-Danlos Syndrome (mcEDS) is a rare connective tissue disorder caused by biallelic loss-of-function variants in CHST14 (mcEDS-CHST14) or DSE (mcEDS-DSE), both of which result in defective dermatan sulfate biosynthesis. Forty-one patients with mcEDS-CHST14 and three patients with mcEDS-DSE have been described in the literature.. Clinical, molecular, and glycobiological findings in three additional patients with mcEDS-DSE were investigated.. Three patients from two families shared craniofacial characteristics (hypertelorism, blue sclera, midfacial hypoplasia), skeletal features (pectus and spinal deformities, characteristic finger shapes, progressive talipes deformities), skin features (fine or acrogeria-like palmar creases), and ocular refractive errors. Homozygous pathogenic variants in DSE were found: c.960T>A/p.Tyr320* in patient 1 and c.996dupT/p.Val333Cysfs*4 in patients 2 and 3. No dermatan sulfate was detected in the urine sample from patient 1, suggesting a complete depletion of DS.. McEDS-DSE is a congenital multisystem disorder with progressive symptoms involving craniofacial, skeletal, cutaneous, and cardiovascular systems, similar to the symptoms of mcEDS-CHST14. However, the burden of symptoms seems lower in patients with mcEDS-DSE.

    Topics: Adolescent; Chondroitin Sulfates; Dermatan Sulfate; Ehlers-Danlos Syndrome; Female; Humans; Loss of Function Mutation; Male; Phenotype; Sulfotransferases; Young Adult

2020
Craniofacial abnormality with skeletal dysplasia in mice lacking chondroitin sulfate N-acetylgalactosaminyltransferase-1.
    Scientific reports, 2018, 11-20, Volume: 8, Issue:1

    Chondroitin sulfate (CS) proteoglycan is a major component of the extracellular matrix and plays an important part in organogenesis. To elucidate the roles of CS for craniofacial development, we analyzed the craniofacial morphology in CS N-acetylgalactosaminyltransferase-1 (T1) gene knockout (KO) mice. T1KO mice showed the impaired intramembranous ossification in the skull, and the final skull shape of adult mice included a shorter face, higher and broader calvaria. Some of T1KO mice exhibited severe facial developmental defect, such as eye defects and cleft lip and palate, causing embryonic lethality. At the postnatal stages, T1KO mice with severely reduced CS amounts showed malocclusion, general skeletal dysplasia and skin hyperextension, closely resembling Ehlers-Danlos syndrome-like connective tissue disorders. The production of collagen type 1 was significantly downregulated in T1KO mice, and the deposition of CS-binding molecules, Wnt3a, was decreased with CS in extracellular matrices. The collagen fibers were irregular and aggregated, and connective tissues were dysorganized in the skin and calvaria of T1KO mice. These results suggest that CS regulates the shape of the craniofacial skeleton by modulating connective tissue organization and that the remarkable reduction of CS induces hypoplasia of intramembranous ossification and cartilage anomaly, resulting in skeletal dysplasia.

    Topics: Animals; Animals, Newborn; Cartilage; Chondroitin Sulfates; Collagen; Craniofacial Abnormalities; Ehlers-Danlos Syndrome; Female; Head; Mice, Knockout; N-Acetylgalactosaminyltransferases; Osteochondrodysplasias; Osteogenesis; Pregnancy; Wnt3A Protein

2018
Musculocontractural Ehlers-Danlos syndrome and neurocristopathies: dermatan sulfate is required for Xenopus neural crest cells to migrate and adhere to fibronectin.
    Disease models & mechanisms, 2016, 06-01, Volume: 9, Issue:6

    Of all live births with congenital anomalies, approximately one-third exhibit deformities of the head and face. Most craniofacial disorders are associated with defects in a migratory stem and progenitor cell population, which is designated the neural crest (NC). Musculocontractural Ehlers-Danlos syndrome (MCEDS) is a heritable connective tissue disorder with distinct craniofacial features; this syndrome comprises multiple congenital malformations that are caused by dysfunction of dermatan sulfate (DS) biosynthetic enzymes, including DS epimerase-1 (DS-epi1; also known as DSE). Studies in mice have extended our understanding of DS-epi1 in connective tissue maintenance; however, its role in fetal development is not understood. We demonstrate that DS-epi1 is important for the generation of isolated iduronic acid residues in chondroitin sulfate (CS)/DS proteoglycans in early Xenopus embryos. The knockdown of DS-epi1 does not affect the formation of early NC progenitors; however, it impairs the correct activation of transcription factors involved in the epithelial-mesenchymal transition (EMT) and reduces the extent of NC cell migration, which leads to a decrease in NC-derived craniofacial skeleton, melanocytes and dorsal fin structures. Transplantation experiments demonstrate a tissue-autonomous role for DS-epi1 in cranial NC cell migration in vivo Cranial NC explant and single-cell cultures indicate a requirement of DS-epi1 in cell adhesion, spreading and extension of polarized cell processes on fibronectin. Thus, our work indicates a functional link between DS and NC cell migration. We conclude that NC defects in the EMT and cell migration might account for the craniofacial anomalies and other congenital malformations in MCEDS, which might facilitate the diagnosis and development of therapies for this distressing condition. Moreover, the presented correlations between human DS-epi1 expression and gene sets of mesenchymal character, invasion and metastasis in neuroblastoma and malignant melanoma suggest an association between DS and NC-derived cancers.

    Topics: Animals; Base Sequence; Biomarkers; Cell Adhesion; Cell Movement; Cell Polarity; Chondroitin Sulfates; Dermatan Sulfate; Ehlers-Danlos Syndrome; Embryo, Nonmammalian; Feedback, Physiological; Fibronectins; Gene Expression Regulation, Developmental; Iduronic Acid; Models, Biological; Muscles; Neoplasms; Neural Crest; Neural Plate; Racemases and Epimerases; Xenopus laevis; Xenopus Proteins

2016
A decorin-deficient matrix affects skin chondroitin/dermatan sulfate levels and keratinocyte function.
    Matrix biology : journal of the International Society for Matrix Biology, 2014, Volume: 35

    Decorin is a small leucine-rich proteoglycan harboring a single glycosaminoglycan chain, which, in skin, is mainly composed of dermatan sulfate (DS). Mutant mice with targeted disruption of the decorin gene (Dcn(-/-)) exhibit an abnormal collagen architecture in the dermis and reduced tensile strength, collectively leading to a skin fragility phenotype. Notably, Ehlers-Danlos patients with mutations in enzymes involved in the biosynthesis of DS display a similar phenotype, and recent studies indicate that DS is involved in growth factor binding and signaling. To determine the impact of the loss of DS-decorin in the dermis, we analyzed the glycosaminoglycan content of Dcn(-/-) and wild-type mouse skin. The total amount of chondroitin/dermatan sulfate (CS/DS) was increased in the Dcn(-/-) skin, but was overall less sulfated with a significant reduction in bisulfated ΔDiS2,X (X=4 or 6) disaccharide units, due to the reduced expression of uronyl 2-O sulfotransferase (Ust). With increasing age, sulfation declined; however, Dcn(-/-) CS/DS was constantly undersulfated vis-à-vis wild-type. Functionally, we found altered fibroblast growth factor (Fgf)-7 and -2 binding due to changes in the micro-heterogeneity of skin Dcn(-/-) CS/DS. To better delineate the role of decorin, we used a 3D Dcn(-/-) fibroblast cell culture model. We found that the CS/DS extracts of wild-type and Dcn(-/-) fibroblasts were similar to the skin sugars, and this correlated with the lack of uronyl 2-O sulfotransferase in the Dcn(-/-) fibroblasts. Moreover, Ffg7 binding to total CS/DS was attenuated in the Dcn(-/-) samples. Surprisingly, wild-type CS/DS significantly reduced the binding of Fgf7 to keratinocytes in a concentration dependent manner unlike the Dcn(-/-) CS/DS that only affected the binding at higher concentrations. Although binding to cell-surfaces was quite similar at higher concentrations, keratinocyte proliferation was differentially affected. Higher concentration of Dcn(-/-) CS/DS induced proliferation in contrast to wild-type CS/DS. 3D co-cultures of fibroblasts and keratinocytes showed that, unlike Dcn(-/-) CS/DS, wild-type CS/DS promoted differentiation of keratinocytes. Collectively, our results provide novel mechanistic explanations for the reported defects in wound healing in Dcn(-/-) mice and possibly Ehlers-Danlos patients. Moreover, the lack of decorin-derived DS and an altered CS/DS composition differentially influence keratinocyte behavior.

    Topics: Age Factors; Animals; Blotting, Western; Cell Culture Techniques; Chondroitin Sulfates; Decorin; Dermatan Sulfate; DNA Primers; Ehlers-Danlos Syndrome; Extracellular Matrix; Fluorescent Antibody Technique; Keratinocytes; Mice; Mice, Knockout; Real-Time Polymerase Chain Reaction; Skin

2014