chondroitin-sulfates has been researched along with Brain-Injuries* in 13 studies
3 review(s) available for chondroitin-sulfates and Brain-Injuries
Article | Year |
---|---|
Formation and remodeling of the brain extracellular matrix in neural plasticity: Roles of chondroitin sulfate and hyaluronan.
The extracellular matrix (ECM) of the brain is rich in glycosaminoglycans such as chondroitin sulfate (CS) and hyaluronan. These glycosaminoglycans are organized into either diffuse or condensed ECM. Diffuse ECM is distributed throughout the brain and fills perisynaptic spaces, whereas condensed ECM selectively surrounds parvalbumin-expressing inhibitory neurons (PV cells) in mesh-like structures called perineuronal nets (PNNs). The brain ECM acts as a non-specific physical barrier that modulates neural plasticity and axon regeneration.. Here, we review recent progress in understanding of the molecular basis of organization and remodeling of the brain ECM, and the involvement of several types of experience-dependent neural plasticity, with a particular focus on the mechanism that regulates PV cell function through specific interactions between CS chains and their binding partners. We also discuss how the barrier function of the brain ECM restricts dendritic spine dynamics and limits axon regeneration after injury.. The brain ECM not only forms physical barriers that modulate neural plasticity and axon regeneration, but also forms molecular brakes that actively controls maturation of PV cells and synapse plasticity in which sulfation patterns of CS chains play a key role. Structural remodeling of the brain ECM modulates neural function during development and pathogenesis.. Genetic or enzymatic manipulation of the brain ECM may restore neural plasticity and enhance recovery from nerve injury. This article is part of a Special Issue entitled Neuro-glycoscience, edited by Kenji Kadomatsu and Hiroshi Kitagawa. Topics: Animals; Brain; Brain Chemistry; Brain Injuries; Chondroitin Sulfates; Extracellular Matrix; Humans; Hyaluronic Acid; Nerve Net; Nerve Regeneration; Neurogenesis; Neuronal Plasticity; Neurons; Parvalbumins; Synapses | 2017 |
Chondroitin sulfate: a key molecule in the brain matrix.
Chondroitin sulfate is a glycosaminoglycan composed of N-acetylgalactosamine and glucuronic acid. It attaches to a core protein to form chondroitin sulfate proteoglycan (CSPG). Being a major component of the brain extracellular matrix, CSPGs are involved in neural development, axon pathfinding and guidance, plasticity and also regeneration after injury in the nervous system. In this review, we shall discuss the structure, the biosynthetic pathway, its functions in the nervous system and how we can improve regeneration in the nervous system by modulating its structure and binding properties. Topics: Animals; Brain; Brain Injuries; Chondroitin Sulfates; Gene Expression Regulation; Humans; Neuronal Plasticity; Spinal Cord Injuries | 2012 |
Chondroitin/Dermatan sulfates in the central nervous system: their structures and functions in health and disease.
Topics: Animals; Brain; Brain Chemistry; Brain Injuries; Chondroitin Sulfates; Dermatan Sulfate; Epilepsy; Humans; Immunohistochemistry; Neurites; Signal Transduction | 2006 |
10 other study(ies) available for chondroitin-sulfates and Brain-Injuries
Article | Year |
---|---|
Decline in arylsulfatase B and Increase in chondroitin 4-sulfotransferase combine to increase chondroitin 4-sulfate in traumatic brain injury.
In an established rat model of penetrating ballistic-like brain injury (PBBI), arylsulfatase B (ARSB; N-acetylgalactosamine 4-sulfatase) activity was significantly reduced at the ipsilateral site of injury, but unaffected at the contralateral site or in sham controls. In addition, the ARSB substrate chondroitin 4-sulfate (C4S) and total sulfated glycosaminoglycans increased. The mRNA expression of chondroitin 4-sulfotransferase 1 (C4ST1; CHST11) and the sulfotransferase activity rose at the ipsilateral site of injury (PBBI-I), indicating contributions from both increased production and reduced degradation to the accumulation of C4S. In cultured, fetal rat astrocytes, following scratch injury, the ARSB activity declined and the nuclear hypoxia inducible factor-1α increased significantly. In contrast, sulfotransferase activity and chondroitin 4-sulfotransferase expression increased following astrocyte exposure to TGF-β1, but not following scratch. These different pathways by which C4S increased in the cell preparations were both evident in the response to injury in the PBBI-I model. Hence, findings support effects of injury because of mechanical disruption inhibiting ARSB and to chemical mediation by TGF-β1 increasing CHST11 expression and sulfotransferase activity. The increase in C4S following traumatic brain injury is because of contributions from impaired degradation and enhanced synthesis of C4S which combine in the pathogenesis of the glial scar. This is the first report of how two mechanisms contribute to the increase in chondroitin 4-sulfate (C4S) in TBI. Following penetrating ballistic-like brain injury in a rat model and in the scratch model of injury in fetal rat astrocytes, Arylsulfatase B activity declined, leading to accumulation of C4S. TGF-β1 exposure increased expression of chondroitin 4-sulfotransferase. Hence, the increase in C4S in TBI is attributable to both impaired degradation and enhanced synthesis, combining in the pathogenesis of the glial scar. Topics: Animals; Brain Injuries; Cells, Cultured; Chondroitin Sulfates; Female; Male; N-Acetylgalactosamine-4-Sulfatase; Pregnancy; Rats; Rats, Sprague-Dawley; Sulfotransferases | 2015 |
Protective effects of low molecular weight chondroitin sulfate on amyloid beta (Aβ)-induced damage in vitro and in vivo.
In the present study, we investigated the effects of low molecular weight chondroitin sulfate (LMWCS) on amyloid beta (Aβ)-induced neurotoxicity in vitro and in vivo. The in vitro results showed that LMWCS blocked Aβ25-35-induced cell viability loss and apoptosis, decreased intracellular calcium concentration, reactive oxygen species (ROS) levels, the mitochondrial membrane potential (MMP) depolarization, and the protein expression of Caspase-3. During in vivo experiments, LMWCS improved the cognitive impairment induced by Aβ1-40, increased the level of choline acetyltransferase (ChAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), and decreased the level of malondialdehyde (MDA) and acetylcholinesterase (AChE) in the mouse brain. Moreover, LMWCS decreased the density of pyramidal cells of CA1 regions, and suppressed the protein expression of Bax/Bcl-2 and Caspase-3, -9 in the hippocampus of mice. In conclusion, LMWCS possessed neuroprotective properties against toxic effects induced by Aβ peptides both in vitro and in vivo, which might be related to anti-apoptotic activity. LMWCS might be a useful preventive and therapeutic compound for Alzheimer's disease. Topics: Acetylcholinesterase; Alzheimer Disease; Amyloid beta-Peptides; Animals; Brain Injuries; Calcium; Caspase 3; Cell Line; Choline O-Acetyltransferase; Chondroitin Sulfates; Disease Models, Animal; Exploratory Behavior; Male; Maze Learning; Membrane Potentials; Mice; Mice, Inbred BALB C; Neuroblastoma; Neuroprotective Agents; Peptide Fragments; Rats; Reactive Oxygen Species | 2015 |
Roles of chondroitin sulfate and dermatan sulfate in the formation of a lesion scar and axonal regeneration after traumatic injury of the mouse brain.
Dermatan sulfate (DS) is synthesized from chondroitin sulfate (CS) by epimerization of glucuronic acid of CS to yield iduronic acid. In the present study, the role of CS and DS was examined in mice that received transection of nigrostriatal dopaminergic pathway followed by injection of glycosaminoglycan degrading enzymes into the lesion site. Two weeks after injury, fibrotic and glial scars were formed around the lesion, and transected axons did not regenerate beyond the fibrotic scar. Injection of chondroitinase ABC (ChABC), which degrades both CS and DS, completely suppressed the fibrotic scar formation, reduced the glial scar, and promoted the regeneration of dopaminergic axons. Injection of the DS-degrading enzyme chondroitinase B (ChB) also yielded similar results. By contrast, injection of chondroitinase AC (ChAC), a CS-degrading enzyme, did not suppress the fibrotic and glial scar formation, but reduced CS immunoreactivity and promoted the axonal regeneration. Addition of transforming growth factor-β1 (TGF-β1) to a co-culture of meningeal fibroblasts and cerebral astrocytes induces a fibrotic scar-like cell cluster. The effect of TGF-β1 on cluster formation was suppressed by treatment with ChABC or ChB, but not by ChAC. TGF-β1-induced cell cluster repelled neurites of neonatal cerebellar neurons, but addition of ChABC or ChAC suppressed the inhibitory property of clusters on neurite outgrowth. The present study is the first to demonstrate that DS and CS play different functions after brain injury: DS is involved in the lesion scar formation, and CS inhibits axonal regeneration. Topics: Animals; Astrocytes; Axons; Brain Injuries; Chondroitin Sulfates; Cicatrix; Coculture Techniques; Dermatan Sulfate; Disease Models, Animal; Fibroblasts; Fluorescent Antibody Technique; Immunohistochemistry; Male; Mice; Mice, Inbred ICR; Nerve Regeneration; Rats; Rats, Sprague-Dawley | 2013 |
Alterations in sulfated chondroitin glycosaminoglycans following controlled cortical impact injury in mice.
Chondroitin sulfate proteoglycans (CSPGs) play a pivotal role in many neuronal growth mechanisms including axon guidance and the modulation of repair processes following injury to the spinal cord or brain. Many actions of CSPGs in the central nervous system (CNS) are governed by the specific sulfation pattern on the glycosaminoglycan (GAG) chains attached to CSPG core proteins. To elucidate the role of CSPGs and sulfated GAG chains following traumatic brain injury (TBI), controlled cortical impact injury of mild to moderate severity was performed over the left sensory motor cortex in mice. Using immunoblotting and immunostaining, we found that TBI resulted in an increase in the CSPGs neurocan and NG2 expression in a tight band surrounding the injury core, which overlapped with the presence of 4-sulfated CS GAGs but not with 6-sulfated GAGs. This increase was observed as early as 7 days post injury (dpi), and persisted for up to 28 dpi. Labeling with markers against microglia/macrophages, NG2+ cells, fibroblasts, and astrocytes showed that these cells were all localized in the area, suggesting multiple origins of chondroitin-4-sulfate increase. TBI also caused a decrease in the expression of aggrecan and phosphacan in the pericontusional cortex with a concomitant reduction in the number of perineuronal nets. In summary, we describe a dual response in CSPGs whereby they may be actively involved in complex repair processes following TBI. Topics: Animals; Antigens; Brain Injuries; Cerebral Cortex; Chondroitin Sulfates; Disease Models, Animal; Male; Mice; Mice, Inbred C57BL; Nerve Regeneration; Nerve Tissue Proteins; Neurocan; Proteoglycans; Recovery of Function | 2012 |
Transforming growth factor-beta1 upregulates keratan sulfate and chondroitin sulfate biosynthesis in microglias after brain injury.
After injury to the adult central nervous system, levels of extracellular matrix molecules increase at the injury site and may inhibit the repair of injured axons. Among these molecules, the importance of proteoglycans, particularly their chondroitin sulfate chains, has been highlighted. We have recently reported that keratan sulfate-deficient mice show better axonal regeneration after injury. Here, we investigated the regulation of keratan sulfate and chondroitin sulfate biosynthesis after neuronal injuries. Several key enzymes required for glycosaminoglycan biosynthesis (beta3GlcNAcT-7 and GlcNAc6ST-1 for keratan sulfate; CS synthase-1 and C6ST-1 for chondroitin sulfate) were expressed at significantly higher levels in the lesion 7 days after a knife-cut injury was made to the cerebral cortex in adult mice. These increases were accompanied by increased expression of TGF-beta(1) and bFGF. Since microglias at the injury sites expressed both keratan sulfate and chondroitin sulfate, the effects of these cytokines were examined in microglias. TGF-beta(1) induced the expression of the above-named enzymes in microglias, and consequently induced keratan sulfate and chondroitin sulfate biosynthesis as well as the expression of the chondroitin/keratan sulfate proteoglycan aggrecan in these cells. TGF-beta(1) also induced bFGF expression in microglias. bFGF in turn induced TGF-beta(1) expression in astrocytes. Astrocyte-conditioned medium following bFGF stimulation indeed induced keratan sulfate and chondroitin sulfate production in microglias. This production was blocked by TGF-beta(1)-neutralizing antibody. Taken together, our data indicate that the biosyntheses of keratan sulfate and chondroitin sulfate are upregulated in common by TGF-beta(1) in microglias after neuronal injuries. Topics: Aggrecans; Animals; Astrocytes; Blotting, Western; Brain Injuries; Carbohydrate Sulfotransferases; Cells, Cultured; Cerebral Cortex; Chondroitin Sulfates; Enzyme-Linked Immunosorbent Assay; Fibroblast Growth Factor 2; Gene Expression; Immunohistochemistry; Keratan Sulfate; Male; Mice; Mice, Inbred C57BL; Microglia; Reverse Transcriptase Polymerase Chain Reaction; Sulfotransferases; Transforming Growth Factor beta1; Up-Regulation | 2009 |
Adult bone marrow-derived mononuclear cells expressing chondroitinase AC transplanted into CNS injury sites promote local brain chondroitin sulphate degradation.
Injury to the CNS of vertebrates leads to the formation of a glial scar and production of inhibitory molecules, including chondroitin sulphate proteoglycans. Various studies suggest that the sugar component of the proteoglycan is responsible for the inhibitory role of these compounds in axonal regeneration. By degrading chondroitin sulphate chains with specific enzymes, denominated chondroitinases, the inhibitory capacity of these proteoglycans is decreased. Chondroitinase administration involves frequent injections of the enzyme at the lesion site which constitutes a rather invasive method. We have produced a vector containing the gene for Flavobacterium heparinum chondroitinase AC for expression in adult bone marrow-derived cells which were then transplanted into an injury site in the CNS. The expression and secretion of active chondroitinase AC was observed in vitro using transfected Chinese hamster ovarian and gliosarcoma cells and in vivo by immunohistochemistry analysis which showed degraded chondroitin sulphate coinciding with the location of transfected bone marrow-derived cells. Immunolabelling of the axonal growth-associated protein GAP-43 was observed in vivo and coincided with the location of degraded chondroitin sulphate. We propose that bone marrow-derived mononuclear cells, transfected with our construct and transplanted into CNS, could be a potential tool for studying an alternative chondroitinase AC delivery method. Topics: Animals; Bone Marrow Cells; Bone Marrow Transplantation; Brain Injuries; Cell Line; Chondroitin Sulfates; Chondroitinases and Chondroitin Lyases; Cricetinae; Cricetulus; Female; GAP-43 Protein; Gene Expression; Gliosarcoma; Glycosaminoglycans; Green Fluorescent Proteins; Mice; Mice, Inbred C57BL; Mice, Transgenic; Transfection | 2008 |
Regeneration of nigrostriatal dopaminergic axons by degradation of chondroitin sulfate is accompanied by elimination of the fibrotic scar and glia limitans in the lesion site.
Chondroitin sulfate increases around a lesion site after central nervous system injury and is believed to be an impediment to axonal regeneration, because administration of chondroitinase ABC, a chondroitin sulfate-degrading enzyme, promotes axonal regeneration of central neurons. To examine the physiological role of chondroitin sulfate up-regulation after injury, the nigrostriatal dopaminergic axons were unilaterally transected in mice, and chondroitinase ABC was then injected into the lesion site. In mice transected only, tyrosine hydroxylase-immunoreactive axons did not extend across the lesion at 1 or 2 weeks after the transection. Immunoreactivities of chondroitin sulfate side chains and core protein of NG2 proteoglycan increased in and around the lesion site, and a fibrotic scar containing type IV collagen deposits developed in the lesion center. In contrast, in mice transected and treated with chondroitinase ABC, numerous tyrosine hydroxylase-immunoreactive axons were regenerated across the lesion at 1 and 2 weeks after the transection. In these animals, chondroitin sulfate immunoreactivity remarkably decreased, and immunoreactivity of 2B6 antibody, which recognizes the stub of degraded chondroitin sulfate side chains, was enhanced. Furthermore, the formation of a fibrotic scar and a glia limitans that surrounds the former was completely prevented, although type IV collagen immunoreactivity remained in newly formed blood capillaries around the lesion site. We discuss the question of whether the chondroitin sulfate is acting as a direct inhibitor of axonal regeneration or whether the observed changes are due to a prevention of the fibrotic scar formation and a rearrangement of astrocytic membranes. Topics: Animals; Axons; Brain Injuries; Chondroitin ABC Lyase; Chondroitin Sulfates; Cicatrix; Corpus Striatum; Dopamine; Male; Mice; Mice, Inbred ICR; Models, Animal; Nerve Regeneration; Neuroglia; Substantia Nigra | 2007 |
Chondroitin 6-sulphate synthesis is up-regulated in injured CNS, induced by injury-related cytokines and enhanced in axon-growth inhibitory glia.
Chondroitin sulphate proteoglycans (CSPGs) are up-regulated in the CNS after injury and inhibit axon regeneration mainly through their glycosaminoglycan (CS-GAG) chains. We have analysed the mRNA levels of the CS-GAG synthesizing enzymes and measured the CS-GAG disaccharide composition by chromatography and immunocytochemistry. Chondroitin 6-sulfotransferase 1 (C6ST1) is up-regulated in most glial types around cortical injuries, and its sulphated product CS-C is also selectively up-regulated. Treatment with TGFalpha and TGFbeta, which are released after brain injury, promotes the expression of C6ST1 and the synthesis of 6-sulphated CS-GAGs in primary astrocytes. Oligodendrocytes, oligodendrocyte precursors and meningeal cells are all inhibitory to axon regeneration, and all express high levels of CS-GAG, including high levels of 6-sulphated GAG. In axon growth-inhibitory Neu7 astrocytes C6ST1 and 6-sulphated GAGs are expressed at high levels, whereas in permissive A7 astrocytes they are not detectable. These results suggest that the up-regulation of CSPG after CNS injury is associated with a specific sulphation pattern on CS-GAGs, mediating the inhibitory properties of proteoglycans on axonal regeneration. Topics: Amino Acid Sequence; Animals; Animals, Newborn; Antigens; Axons; Blotting, Northern; Brain; Brain Injuries; CD11b Antigen; Cells, Cultured; Chondroitin Sulfates; Chromatography; Embryo, Mammalian; Female; Gene Expression Regulation; Glial Fibrillary Acidic Protein; Glycosaminoglycans; Immunohistochemistry; In Situ Hybridization; Laminin; Nerve Regeneration; Neuroglia; Proteoglycans; Rats; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Stem Cells; Time Factors; Up-Regulation | 2005 |
CS-4,6 is differentially upregulated in glial scar and is a potent inhibitor of neurite extension.
The precise contribution of different CS-GAGs to CSPG-mediated inhibition of axonal growth after CNS injury is unknown. Quantification of the CS-GAGs in uninjured and injured brain (scar tissue) using fluorophore-assisted carbohydrate electrophoresis (FACE) demonstrated that the dominant CS-GAG in the uninjured brain is CS-4 whereas, in glial scar, CS-2, CS-6, and CS-4,6 were over-expressed. To determine if the pattern of sulfation influenced neurite extension, we compared the effects of CS-GAGs with dominant CS-4, CS-6, or CS-4,6 sulfation to intact CSPG (aggrecan), chondroitin (CS-0), and hyaluronan on chick DRG neurite outgrowth. We report that CS-4,6 GAG, one of the upregulated CS-GAGs in astroglial scar, is potently inhibitory and is comparable to intact aggrecan, a CSPG with known inhibitory properties. Thus, a specific CS-GAG that is differentially over-expressed in astroglial scar is a potent inhibitor of neurite extension. These results may influence the design of more specific strategies to enhance CNS regeneration after injury. Topics: Aggrecans; Animals; Brain Injuries; Chick Embryo; Chondroitin; Chondroitin Sulfates; Cicatrix; Extracellular Matrix Proteins; Female; Ganglia, Spinal; Gliosis; Growth Cones; Growth Inhibitors; Hyaluronic Acid; Lectins, C-Type; Neurites; Proteoglycans; Rats; Sulfates; Up-Regulation | 2005 |
Restricted appearance of tenascin and chondroitin sulphate proteoglycans after transection and sprouting of adult rat postcommissural fornix.
Transected fibres of the adult rat postcommissural fornix sprout over short distances but fail to traverse the lesion site and terminate in close vicinity to the wound. As a step in defining the molecular environment responsible for regeneration failure at the lesion site, we have used immunocytochemistry to analyse the spatio-temporal expression pattern of two putative growth-inhibitory extracellular matrix components, tenascin and chondroitin sulphate proteoglycans and their topographical relationship to the sprouting axons. Both tenascin and chondroitin sulphate proteoglycan labelling appeared after fornix transection and were confined to the immediate vicinity of the lesion site. While tenascin-labelling was associated with astrocytes and microglia/macrophages, which accumulate preferentially at the tract borders, chondroitin sulphate proteoglycan labelling appeared as a homogeneous meshwork around the wound. Tenascin-like immunoreactivity disappeared between 17 days and 4 weeks, but chondroitin sulphate proteoglycan staining persisted at least up to 14 months after transection. Regrowing fornix fibres invaded and elongated within the chondroitin sulphate proteoglycan-immunopositive region up to the lesion site, where they terminated. This zone of axonal growth inhibition was neither characterized by an increase of chondroitin sulphate proteoglycan immunoreactivity nor by the presence of tenascin-immunopositive structures. The spatio-temporal distribution patterns of tenascin and chondroitin sulphate proteoglycan and the permeability of the chondroitin sulphate proteoglycan-immunopositive region for sprouting axons do not support the hypothesis that chondroitin sulphate proteoglycan alone and/or tenascin inhibit the advance of sprouting fornix fibres. Topics: Animals; Axons; Brain; Brain Injuries; Chondroitin Sulfates; Female; Immunohistochemistry; Male; Nerve Fibers; Nerve Regeneration; Proteoglycans; Rats; Rats, Wistar; Tenascin | 1995 |