chondroitin has been researched along with Carcinoma--Lewis-Lung* in 1 studies
1 review(s) available for chondroitin and Carcinoma--Lewis-Lung
Article | Year |
---|---|
[Hereditary Skeletal and Skin Disorders Caused by Defects in the Biosynthesis of Chondroitin/Dermatan Sulfate, and Molecular Mechanisms of Pulmonary Metastasis].
The roles of chondroitin sulfate (CS) and dermatan sulfate (DS) have been demonstrated in various biological events such as the construction of the extracellular matrix, tissue development, and cell signaling through interactions with extracellular matrix components, morphogens, and growth factors. Human genetic diseases, including skeletal abnormalities, connective tissue diseases, and heart defects, were reported to be caused by mutations in the genes encoding glycosyltransferases, epimerases, and sulfotransferases that are responsible for the biosynthesis of CS and DS. Glycobiological approaches revealed that mutations in CS- and DS-biosynthetic enzymes led to reductions in their enzymatic activities and in the levels of CS and DS. Furthermore, CS at the surface of tumor cells plays a key role in pulmonary metastasis. A receptor for advanced glycation end-products (RAGE) was predominantly expressed in the lung, and was identified as a functional receptor for CS chains. CS and anti-RAGE antibodies inhibited the pulmonary metastasis of not only Lewis lung carcinoma but also B16 melanoma cells. Hence, RAGE and CS are potential targets of drug discovery for pulmonary metastasis and a number of other pathological conditions involving RAGE in the pathogenetic mechanism. This review provides an overview of glycobiological studies on characterized genetic disorders caused by the impaired biosynthesis of CS, as well as DS, and on the pulmonary metastasis of Lewis lung carcinoma cells involving CS and RAGE. Topics: Animals; Bone Diseases; Carcinoma, Lewis Lung; Chondroitin; Dermatan Sulfate; Humans; Lung Neoplasms; Mice; Receptor for Advanced Glycation End Products; Skin Diseases | 2019 |