cholecystokinin and Neurodegenerative-Diseases

cholecystokinin has been researched along with Neurodegenerative-Diseases* in 2 studies

Other Studies

2 other study(ies) available for cholecystokinin and Neurodegenerative-Diseases

ArticleYear
Cholecystokinin and glucagon-like peptide-1 analogues regulate intestinal tight junction, inflammation, dopaminergic neurons and α-synuclein accumulation in the colon of two Parkinson's disease mouse models.
    European journal of pharmacology, 2022, Jul-05, Volume: 926

    Parkinson's disease (PD) is the second most common neurodegenerative disease, and no treatment is available to stop its progression. Studies have shown that the colonic pathology of PD precedes that of the brain. The 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model and the human A53T α-synuclein (α-syn) transgenic PD mouse model show colonic pathology and intestinal dopaminergic neuronal damage, which is comparable to the intestinal pathology of PD. Cholecystokinin (CCK) and glucagon-like peptide-1 (GLP-1), which are brain-gut peptides, have neurotrophic and anti-inflammatory properties. Two GLP-1R agonists have already shown robust effects in phase II trials in PD patients. However, whether they have beneficial effects on colonic pathology in PD remains unclear. In this study, MPTP-treated mice and human A53T α-syn transgenic mice were intraperitoneally injected with a CCK analogue or Liraglutide, a GLP-1 analogue, once a day for 5 weeks. Levels of colonic epithelial tight junction proteins including occludin and zonula occludens-1 (ZO-1), inflammatory biomarkers including inducible nitric oxide synthase (iNOS) and tumor necrosis factor-alpha (TNF-α), brain-derived neurotrophic factor (BDNF), tyrosine hydroxylase (TH) and α-syn were analyzed. The results show that the CCK analogue and Liraglutide both restored the disruption of intestinal tight junction, reduced colonic inflammation, inhibited colonic dopaminergic neurons reduction and the accumulation of α-syn oligomers in the colon of both PD mice models. This study suggested that CCK or GLP-1 analogues could be beneficial to the improvement of leaky gut barrier, inflammation, dopaminergic neuron impairment and accumulation of α-syn in the colon of PD patients.

    Topics: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine; alpha-Synuclein; Animals; Cholecystokinin; Colon; Disease Models, Animal; Dopaminergic Neurons; Glucagon-Like Peptide 1; Humans; Inflammation; Liraglutide; Mice; Mice, Inbred C57BL; Mice, Transgenic; Neurodegenerative Diseases; Parkinson Disease; Tight Junctions

2022
Protective effects of cholecystokinin-8 on methamphetamine-induced behavioral changes and dopaminergic neurodegeneration in mice.
    Behavioural brain research, 2015, Apr-15, Volume: 283

    We investigated whether pretreatment with the neuropeptide cholecystokinin-8 affected methamphetamine (METH)-induced behavioral changes and dopaminergic neurodegeneration in male C57/BL6 mice. CCK-8 pretreatment alone had no effect on locomotion and stereotypic behavior and could not induce behavioral sensitization; however, it attenuated, in a dose-dependent manner, hyperlocomotion and behavioral sensitization induced by a low dose of METH (1mg/kg). CCK-8 attenuated METH-induced stereotypic behavior at a dose of 3mg/kg but not at 10mg/kg. CCK-8 pretreatment attenuated METH (10mg/kg)-induced hyperthermia, the decrease of tyrosine hydroxylase (TH) and dopamine transporter (DAT) in the striatum, and TH in the substantia nigra. CCK-8 alone had no effect on rectal temperature, TH and DAT expression in the nigrostriatal region. In conclusion, our study demonstrated that pretreatment with CCK-8 inhibited changes typically induced by repeated exposure to METH, such as hyperlocomotion, behavioral sensitization, stereotypic behavior, and dopaminergic neurotoxicity. These findings make CCK-8 a potential therapeutic agent for the treatment of multiple symptoms associated with METH abuse.

    Topics: Amphetamine-Related Disorders; Animals; Body Temperature; Cholecystokinin; Corpus Striatum; Dopamine Agents; Dopamine Plasma Membrane Transport Proteins; Dopaminergic Neurons; Dose-Response Relationship, Drug; Dyskinesia, Drug-Induced; Male; Methamphetamine; Mice, Inbred C57BL; Motor Activity; Neurodegenerative Diseases; Neuroprotective Agents; Peptide Fragments; Random Allocation; Stereotyped Behavior; Substantia Nigra; Tyrosine 3-Monooxygenase

2015