cholecystokinin has been researched along with Metabolic-Diseases* in 2 studies
1 review(s) available for cholecystokinin and Metabolic-Diseases
Article | Year |
---|---|
Role of CCK/gastrin receptors in gastrointestinal/metabolic diseases and results of human studies using gastrin/CCK receptor agonists/antagonists in these diseases.
In this paper, the established and possible roles of CCK1 and CCK2 receptors in gastrointestinal (GI) and metabolic diseases are reviewed and available results from human agonist/antagonist studies are discussed. While there is evidence for the involvement of CCK1R in numerous diseases including pancreatic disorders, motility disorders, tumor growth, regulation of satiety and a number of CCK-deficient states, the role of CCK1R in these conditions is not clearly defined. There are encouraging data from several clinical studies of CCK1R antagonists in some of these conditions, but their role as therapeutic agents remains unclear. The role of CCK2R in physiological (atrophic gastritis, pernicious anemia) and pathological (Zollinger-Ellison syndrome) hypergastrinemic states, its effects on the gastric mucosa (ECL cell hyperplasia, carcinoids, parietal cell mass) and its role in acid-peptic disorders are clearly defined. Furthermore, recent studies point to a possible role for CCK2R in a number of GI malignancies. Current data from human studies of CCK2R antagonists are presented and their potential role in the treatment of these conditions reviewed. Furthermore, the role of CCK2 receptors as targets for medical imaging is discussed. Topics: Animals; Cholecystokinin; Gastrins; Gastrointestinal Diseases; Humans; Metabolic Diseases; Receptors, Cholecystokinin | 2007 |
1 other study(ies) available for cholecystokinin and Metabolic-Diseases
Article | Year |
---|---|
Olanzapine treatment and metabolic dysfunction: a dose response study in female Sprague Dawley rats.
Second generation antipsychotics are commonly prescribed for the treatment of schizophrenia, however some can induce metabolic dysfunction side-effects such as weight gain, obesity and diabetes. Clinical reports suggest olanzapine alters satiety signals, although findings appear conflicting. Previous animal model studies have utilised a range of olanzapine dosages, however the dosage that better mimics the human scenario of olanzapine-induced weight gain is unclear. Female Sprague-Dawley rats were treated orally, three times daily with olanzapine (0.25mg/kg, 0.5mg/kg, 1.0mg/kg, 2.0mg/kg), self-administered in a sweet cookie dough pellet at eight-hourly intervals) or vehicle (n=12/group) for 14-days. Olanzapine orally self-administered in multiple doses (eight-hourly intervals) may circumvent a drop in plasma drug concentration and ensure the maintenance of a consistently high olanzapine level in the rat. Olanzapine increased body weight (0.5mg/kg, 1.0mg/kg, 2.0mg/kg), food intake (2.0mg/kg) and feeding efficiency (0.5-2.0mg/kg), with no effect on water intake. Subcutaneous inguinal (1.0mg/kg, 2.0mg/kg) and intra-abdominal perirenal fat were increased (2.0mg/kg), but not interscapula brown adipose tissue. Olanzapine increased circulating ghrelin and cholecystokinin, but had no effect on peptide YY((3-36)). Olanzapine decreased insulin (0.25-2.0mg/kg) and locomotor activity in the open field arena (0.5-2.0mg/kg). A low dosage of 0.25mg/kg olanzapine had no effect on most parameters measured. Olanzapine-induced weight gain is associated with hyperphagia, enhanced feeding efficiency and adiposity, decreased locomotor activity and altered satiety signaling. The animal model used in the present study of self-administered oral olanzapine treatment (t.i.d.) at a dosage range of 0.5-2.0mg/kg (but not 0.25mg/kg) mimics aspects of the clinic. Topics: Adiposity; Analysis of Variance; Animals; Behavior, Animal; Benzodiazepines; Cholecystokinin; Dose-Response Relationship, Drug; Drug Administration Schedule; Eating; Exploratory Behavior; Female; Hormones; Intra-Abdominal Fat; Metabolic Diseases; Olanzapine; Peptide Fragments; Peptide YY; Rats; Rats, Sprague-Dawley; Selective Serotonin Reuptake Inhibitors; Self Administration; Statistics as Topic; Weight Gain | 2011 |