cholecystokinin has been researched along with Fetal-Growth-Retardation* in 2 studies
2 other study(ies) available for cholecystokinin and Fetal-Growth-Retardation
Article | Year |
---|---|
Structural and functional development of small intestine in intrauterine growth retarded porcine offspring born to gilts fed diets with differing protein ratios throughout pregnancy.
Protein level in the maternal diet plays a crucial role in fetal programming during pregnancy. Low or high protein level increases the risk of intrauterine growth retardation (IUGR). The aim of this study was to investigate the structural and functional development of the small intestine in piglets from sows fed a control (C, 12.1% protein), a high protein (HP, 30% protein), or a low protein (LP, 6.5% protein) diet during pregnancy. Newborns were classified as IUGR (birth weight ≤1.18 kg) and non-IUGR (birth weight >1.18 kg). The piglets were euthanized on postnatal day (PD)1, PD28 and PD188. The LP diet in non-IUGR neonates resulted in decreased body weight on PD1. The LP and HP diets resulted in both decreased body weight and delayed catch-up growth in the IUGR piglets. The HP and LP-diets increased the length of villi on PD1 in non-IUGRs but not in IUGRs. At birth, the expressions of Ki67 and active caspase 3 in mid-jejunum epithelium of HP and LP non-IUGR neonates were significantly lower as compared to C non-IUGRs whilst in IUGRs the respective expressions were as high as in C non-IUGRs. The postnatal dynamics of brush border enzyme activities and vacuolated enterocytes disappearance showed significant drop in enterocyte maturation in IUGR as compared to non-IUGR neonates. In conclusion, both HP and LP diets led to retarded development of non-IUGR piglets. In IUGR piglets both HP and LP diets resulted in delayed catch-up growth, without adaptive changes in brush border digestive enzymes. Topics: Animal Nutritional Physiological Phenomena; Animals; Animals, Newborn; Apoptosis; Birth Weight; Body Weight; Caspase 3; Cholecystokinin; Cytokines; Diet; Dietary Proteins; Female; Fetal Development; Fetal Growth Retardation; Glucagon-Like Peptides; Inflammation; Intestinal Mucosa; Jejunum; Ki-67 Antigen; Male; Mitosis; Pregnancy; Pregnancy Complications; Random Allocation; RNA, Messenger; Sus scrofa | 2012 |
Altered gene expressions of ghrelin, PYY, and CCK in the gastrointestinal tract of the hyperphagic intrauterine growth restriction rat offspring.
Intrauterine growth restriction (IUGR) is associated with a substantially greater incidence of metabolic syndrome in adulthood. Animal studies have shown that IUGR offspring are hyperphagic during the early postnatal period and therefore exhibit obesity. The molecular mechanisms underlying food intake regulation in the gastrointestinal tract have not been clarified in IUGR. In the present study, we utilized a rat model of IUGR by restricting the food intake of the mother (50% of the normal intake, ad libitum; FR group) from day 7 of gestation until delivery. Pups from undernourished mothers were fostered by control mothers. We examined the food intake and assessed the gene expressions of ghrelin, peptide YY (PYY), and cholecystokinin (CCK) in the alimentary tract of male newborns (postnatal day1) and adult offspring (age, 7 months). Compared to the offspring whose mothers received the standard diet ad libitum (CON offspring), FR offspring were hyperphagic from the weaning time until the end of the experiment, and resulted in a heavier final weight. Both newborn and adult FR offspring had higher ghrelin gene expression in the stomach and higher ghrelin plasma levels than did the controls. Although the gastrointestinal gene expressions and plasma levels of the anorexic peptides, PYY and CCK, were elevated in the FR newborns, they decreased in the FR adults. Our findings suggest that the altered gene expressions of orexigenic and anorexigenic gut peptides in the gastrointestinal tract in the maternal undernutrition-induced IUGR offspring provide a potential mechanism to explain hyperphagia and obesity seen in these offspring. Topics: Adult; Animals; Animals, Newborn; Body Weight; Cholecystokinin; Disease Models, Animal; Eating; Female; Fetal Growth Retardation; Gastrointestinal Tract; Gene Expression; Gene Expression Regulation, Developmental; Ghrelin; Humans; Hyperphagia; Male; Peptide YY; Rats; Rats, Sprague-Dawley; Up-Regulation | 2011 |