cholecalciferol has been researched along with Neoplasm-Metastasis* in 23 studies
1 review(s) available for cholecalciferol and Neoplasm-Metastasis
4 trial(s) available for cholecalciferol and Neoplasm-Metastasis
Article | Year |
---|---|
Vitamin D supplementation: a potential therapeutic agent for metastatic colorectal cancer.
Preclinical and epidemiological evidence suggests that vitamin D may have anti-cancer activities in patients with colorectal cancer. A recently completed, randomised Phase 2 trial of vitamin D Topics: Cholecalciferol; Colorectal Neoplasms; Dietary Supplements; Double-Blind Method; Humans; Neoplasm Metastasis; Vitamin D | 2020 |
Effect of Vitamin D3 Supplements on Development of Advanced Cancer: A Secondary Analysis of the VITAL Randomized Clinical Trial.
Epidemiologic and trial data suggest that vitamin D supplementation may reduce metastatic cancer and cancer mortality, reflecting shared biological pathways.. To follow up on the possible reduction in cancer death in the Vitamin D and Omega-3 Trial (VITAL) with an evaluation of whether vitamin D reduces the incidence of advanced (metastatic or fatal) cancer and an examination possible effect modification by body mass index.. VITAL is a randomized, double-blind, placebo-controlled, 2 × 2 factorial clinical trial of vitamin D3 (cholecalciferol, 2000 IU/d) and marine omega-3 fatty acids (1 g/d). This multicenter clinical trial was conducted in the United States; participants included men aged 50 years or older and women aged 55 years or older who were free of cancer and cardiovascular disease at baseline. Randomization took place from November 2011 through March 2014, and study medication ended on December 31, 2017. Data for this secondary analysis were analyzed from November 1, 2011, to December 31, 2017.. Vitamin D3 (cholecalciferol, 2000 IU/d) and marine omega-3 fatty acids (1 g/d) supplements.. For the present analysis, the primary outcome was a composite incidence of metastatic and fatal invasive total cancer, because the main VITAL study showed a possible reduction in fatal cancer with vitamin D supplementation and effect modification by body mass index (BMI; calculated as weight in kilograms divided by height in meters squared) for total cancer incidence reduction for individuals with normal BMI, but not for individuals with overweight or obesity. Secondary analyses included examination of BMI (<25, 25 to < 30, and ≥30) as effect modifiers of the observed associations.. Among 25 871 randomized VITAL participants (51% female; mean [SD] age, 67.1 [7.1] years), 1617 were diagnosed with invasive cancer over a median intervention period of 5.3 years (range, 3.8-6.1 years). As previously reported, no significant differences for cancer incidence by treatment arm were observed. However, a significant reduction in advanced cancers (metastatic or fatal) was found for those randomized to vitamin D compared with placebo (226 of 12 927 assigned to vitamin D [1.7%] and 274 of 12 944 assigned to placebo [2.1%]; HR, 0.83 [95% CI, 0.69-0.99]; P = .04). When stratified by BMI, there was a significant reduction for the vitamin D arm in incident metastatic or fatal cancer among those with normal BMI (BMI<25: HR, 0.62 [95% CI, 0.45-0.86]) but not among those with overweight or obesity (BMI 25-<30: HR, 0.89 [95% CI, 0.68-1.17]; BMI≥30: HR, 1.05 [95% CI, 0.74-1.49]) (P = .03 for interaction by BMI).. In this randomized clinical trial, supplementation with vitamin D reduced the incidence of advanced (metastatic or fatal) cancer in the overall cohort, with the strongest risk reduction seen in individuals with normal weight.. ClinicalTrials.gov Identifier: NCT01169259. Topics: Aged; Cholecalciferol; Comorbidity; Dietary Supplements; Disease Progression; Double-Blind Method; Female; Humans; Male; Middle Aged; Neoplasm Metastasis; Neoplasms; Obesity; Overweight; Proportional Hazards Models; Vitamins | 2020 |
Middle East Respiratory Syndrome (MERS) is a novel respiratory illness firstly reported in Saudi Arabia in 2012. It is caused by a new corona virus, called MERS corona virus (MERS-CoV). Most people who have MERS-CoV infection developed severe acute respiratory illness.. This work is done to determine the clinical characteristics and the outcome of intensive care unit (ICU) admitted patients with confirmed MERS-CoV infection.. This study included 32 laboratory confirmed MERS corona virus infected patients who were admitted into ICU. It included 20 (62.50%) males and 12 (37.50%) females. The mean age was 43.99 ± 13.03 years. Diagnosis was done by real-time reverse transcription polymerase chain reaction (rRT-PCR) test for corona virus on throat swab, sputum, tracheal aspirate, or bronchoalveolar lavage specimens. Clinical characteristics, co-morbidities and outcome were reported for all subjects.. Most MERS corona patients present with fever, cough, dyspnea, sore throat, runny nose and sputum. The presence of abdominal symptoms may indicate bad prognosis. Prolonged duration of symptoms before patients' hospitalization, prolonged duration of mechanical ventilation and hospital stay, bilateral radiological pulmonary infiltrates, and hypoxemic respiratory failure were found to be strong predictors of mortality in such patients. Also, old age, current smoking, smoking severity, presence of associated co-morbidities like obesity, diabetes mellitus, chronic heart diseases, COPD, malignancy, renal failure, renal transplantation and liver cirrhosis are associated with a poor outcome of ICU admitted MERS corona virus infected patients.. Plasma HO-1, ferritin, p21, and NQO1 were all elevated at baseline in CKD participants. Plasma HO-1 and urine NQO1 levels each inversely correlated with eGFR (. SnPP can be safely administered and, after its injection, the resulting changes in plasma HO-1, NQO1, ferritin, and p21 concentrations can provide information as to antioxidant gene responsiveness/reserves in subjects with and without kidney disease.. A Study with RBT-1, in Healthy Volunteers and Subjects with Stage 3-4 Chronic Kidney Disease, NCT0363002 and NCT03893799.. HFNC did not significantly modify work of breathing in healthy subjects. However, a significant reduction in the minute volume was achieved, capillary [Formula: see text] remaining constant, which suggests a reduction in dead-space ventilation with flows > 20 L/min. (ClinicalTrials.gov registration NCT02495675).. 3 组患者手术时间、术中显性失血量及术后 1 周血红蛋白下降量比较差异均无统计学意义(. 对于肥胖和超重的膝关节单间室骨关节炎患者,采用 UKA 术后可获满意短中期疗效,远期疗效尚需进一步随访观察。.. Decreased muscle strength was identified at both time points in patients with hEDS/HSD. The evolution of most muscle strength parameters over time did not significantly differ between groups. Future studies should focus on the effectiveness of different types of muscle training strategies in hEDS/HSD patients.. These findings support previous adverse findings of e-cigarette exposure on neurodevelopment in a mouse model and provide substantial evidence of persistent adverse behavioral and neuroimmunological consequences to adult offspring following maternal e-cigarette exposure during pregnancy. https://doi.org/10.1289/EHP6067.. This RCT directly compares a neoadjuvant chemotherapy regimen with a standard CROSS regimen in terms of overall survival for patients with locally advanced ESCC. The results of this RCT will provide an answer for the controversy regarding the survival benefits between the two treatment strategies.. NCT04138212, date of registration: October 24, 2019.. Results of current investigation indicated that milk type and post fermentation cooling patterns had a pronounced effect on antioxidant characteristics, fatty acid profile, lipid oxidation and textural characteristics of yoghurt. Buffalo milk based yoghurt had more fat, protein, higher antioxidant capacity and vitamin content. Antioxidant and sensory characteristics of T. If milk is exposed to excessive amounts of light, Vitamins B. The two concentration of ZnO nanoparticles in the ambient air produced two different outcomes. The lower concentration resulted in significant increases in Zn content of the liver while the higher concentration significantly increased Zn in the lungs (p < 0.05). Additionally, at the lower concentration, Zn content was found to be lower in brain tissue (p < 0.05). Using TEM/EDX we detected ZnO nanoparticles inside the cells in the lungs, kidney and liver. Inhaling ZnO NP at the higher concentration increased the levels of mRNA of the following genes in the lungs: Mt2 (2.56 fold), Slc30a1 (1.52 fold) and Slc30a5 (2.34 fold). At the lower ZnO nanoparticle concentration, only Slc30a7 mRNA levels in the lungs were up (1.74 fold). Thus the two air concentrations of ZnO nanoparticles produced distinct effects on the expression of the Zn-homeostasis related genes.. Until adverse health effects of ZnO nanoparticles deposited in organs such as lungs are further investigated and/or ruled out, the exposure to ZnO nanoparticles in aerosols should be avoided or minimised. Topics: A549 Cells; Acetylmuramyl-Alanyl-Isoglutamine; Acinetobacter baumannii; Acute Lung Injury; Adaptor Proteins, Signal Transducing; Adenine; Adenocarcinoma; Adipogenesis; Administration, Cutaneous; Administration, Ophthalmic; Adolescent; Adsorption; Adult; Aeromonas hydrophila; Aerosols; Aged; Aged, 80 and over; Aging; Agriculture; Air Pollutants; Air Pollution; Airway Remodeling; Alanine Transaminase; Albuminuria; Aldehyde Dehydrogenase 1 Family; Algorithms; AlkB Homolog 2, Alpha-Ketoglutarate-Dependent Dioxygenase; Alzheimer Disease; Amino Acid Sequence; Ammonia; Ammonium Compounds; Anaerobiosis; Anesthetics, Dissociative; Anesthetics, Inhalation; Animals; Anti-Bacterial Agents; Anti-HIV Agents; Anti-Infective Agents; Anti-Inflammatory Agents; Antibiotics, Antineoplastic; Antibodies, Antineutrophil Cytoplasmic; Antibodies, Monoclonal, Humanized; Antifungal Agents; Antigens, Bacterial; Antigens, CD; Antigens, Differentiation, Myelomonocytic; Antimetabolites, Antineoplastic; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Antioxidants; Antitubercular Agents; Antiviral Agents; Apolipoproteins E; Apoptosis; Arabidopsis; Arabidopsis Proteins; Arsenic; Arthritis, Rheumatoid; Asthma; Atherosclerosis; ATP-Dependent Proteases; Attitude of Health Personnel; Australia; Austria; Autophagy; Axitinib; Bacteria; Bacterial Outer Membrane Proteins; Bacterial Proteins; Bacterial Toxins; Bacterial Typing Techniques; Bariatric Surgery; Base Composition; Bayes Theorem; Benzoxazoles; Benzylamines; beta Catenin; Betacoronavirus; Betula; Binding Sites; Biological Availability; Biological Oxygen Demand Analysis; Biomarkers; Biomarkers, Tumor; Biopsy; Bioreactors; Biosensing Techniques; Birth Weight; Blindness; Blood Chemical Analysis; Blood Gas Analysis; Blood Glucose; Blood Pressure; Blood Pressure Monitoring, Ambulatory; Blood-Brain Barrier; Blotting, Western; Body Mass Index; Body Weight; Bone and Bones; Bone Density; Bone Resorption; Borates; Brain; Brain Infarction; Brain Injuries, Traumatic; Brain Neoplasms; Breakfast; Breast Milk Expression; Breast Neoplasms; Bronchi; Bronchoalveolar Lavage Fluid; Buffaloes; Cadherins; Calcification, Physiologic; Calcium Compounds; Calcium, Dietary; Cannula; Caprolactam; Carbon; Carbon Dioxide; Carboplatin; Carcinogenesis; Carcinoma, Ductal; Carcinoma, Ehrlich Tumor; Carcinoma, Hepatocellular; Carcinoma, Non-Small-Cell Lung; Carcinoma, Pancreatic Ductal; Carcinoma, Renal Cell; Cardiovascular Diseases; Carps; Carrageenan; Case-Control Studies; Catalysis; Catalytic Domain; Cattle; CD8-Positive T-Lymphocytes; Cell Adhesion; Cell Cycle Proteins; Cell Death; Cell Differentiation; Cell Line; Cell Line, Tumor; Cell Movement; Cell Nucleus; Cell Phone Use; Cell Proliferation; Cell Survival; Cell Transformation, Neoplastic; Cell Transformation, Viral; Cells, Cultured; Cellulose; Chemical Phenomena; Chemoradiotherapy; Child; Child Development; Child, Preschool; China; Chitosan; Chlorocebus aethiops; Cholecalciferol; Chromatography, Liquid; Circadian Clocks; Circadian Rhythm; Circular Dichroism; Cisplatin; Citric Acid; Clinical Competence; Clinical Laboratory Techniques; Clinical Trials, Phase I as Topic; Clinical Trials, Phase II as Topic; Clostridioides difficile; Clostridium Infections; Coculture Techniques; Cohort Studies; Cold Temperature; Colitis; Collagen Type I; Collagen Type I, alpha 1 Chain; Collagen Type XI; Color; Connective Tissue Diseases; Copper; Coronary Angiography; Coronavirus 3C Proteases; Coronavirus Infections; Cost of Illness; Counselors; COVID-19; COVID-19 Testing; Creatine Kinase; Creatinine; Cross-Over Studies; Cross-Sectional Studies; Cryoelectron Microscopy; Cryosurgery; Crystallography, X-Ray; Cues; Cultural Competency; Cultural Diversity; Curriculum; Cyclic AMP Response Element-Binding Protein; Cyclin-Dependent Kinase Inhibitor p21; Cycloparaffins; Cysteine Endopeptidases; Cytokines; Cytoplasm; Cytoprotection; Databases, Factual; Denitrification; Deoxycytidine; Diabetes Complications; Diabetes Mellitus; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 1; Diabetes Mellitus, Type 2; Diagnosis, Differential; Diatoms; Diet; Diet, High-Fat; Dietary Exposure; Diffusion Magnetic Resonance Imaging; Diketopiperazines; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Disease Progression; Disease-Free Survival; DNA; DNA Damage; DNA Glycosylases; DNA Repair; DNA-Binding Proteins; DNA, Bacterial; DNA, Viral; Docetaxel; Dose Fractionation, Radiation; Dose-Response Relationship, Drug; Down-Regulation; Doxorubicin; Drosophila; Drosophila melanogaster; Drug Carriers; Drug Delivery Systems; Drug Liberation; Drug Repositioning; Drug Resistance, Bacterial; Drug Resistance, Multiple, Bacterial; Drug Resistance, Neoplasm; Drug Screening Assays, Antitumor; Drug Synergism; Drug Therapy, Combination; Edema; Edible Grain; Education, Graduate; Education, Medical, Graduate; Education, Pharmacy; Ehlers-Danlos Syndrome; Electron Transport Complex III; Electron Transport Complex IV; Electronic Nicotine Delivery Systems; Emergency Service, Hospital; Empathy; Emulsions; Endothelial Cells; Endurance Training; Energy Intake; Enterovirus A, Human; Environment; Environmental Monitoring; Enzyme Assays; Enzyme Inhibitors; Epithelial Cells; Epithelial-Mesenchymal Transition; Epoxide Hydrolases; Epoxy Compounds; Erythrocyte Count; Erythrocytes; Escherichia coli; Escherichia coli Infections; Escherichia coli Proteins; Esophageal Neoplasms; Esophageal Squamous Cell Carcinoma; Esophagectomy; Estrogens; Etanercept; Ethiopia; Ethnicity; Ethylenes; Exanthema; Exercise; Exercise Test; Exercise Tolerance; Extracellular Matrix; Extracorporeal Membrane Oxygenation; Eye Infections, Fungal; False Negative Reactions; Fatty Acids; Fecal Microbiota Transplantation; Feces; Female; Femur Neck; Fermentation; Ferritins; Fetal Development; Fibroblast Growth Factor-23; Fibroblast Growth Factors; Fibroblasts; Fibroins; Fish Proteins; Flavanones; Flavonoids; Focus Groups; Follow-Up Studies; Food Handling; Food Supply; Food, Formulated; Forced Expiratory Volume; Forests; Fractures, Bone; Fruit and Vegetable Juices; Fusobacteria; G1 Phase Cell Cycle Checkpoints; G2 Phase Cell Cycle Checkpoints; Gamma Rays; Gastrectomy; Gastrointestinal Microbiome; Gastrointestinal Stromal Tumors; Gefitinib; Gels; Gemcitabine; Gene Amplification; Gene Expression; Gene Expression Regulation; Gene Expression Regulation, Bacterial; Gene Expression Regulation, Neoplastic; Gene Expression Regulation, Plant; Gene Knockdown Techniques; Gene-Environment Interaction; Genotype; Germany; Glioma; Glomerular Filtration Rate; Glucagon; Glucocorticoids; Glycemic Control; Glycerol; Glycogen Synthase Kinase 3 beta; Glycolipids; Glycolysis; Goblet Cells; Gram-Negative Bacterial Infections; Granulocyte Colony-Stimulating Factor; Graphite; Greenhouse Effect; Guanidines; Haemophilus influenzae; HCT116 Cells; Health Knowledge, Attitudes, Practice; Health Personnel; Health Services Accessibility; Health Services Needs and Demand; Health Status Disparities; Healthy Volunteers; Heart Failure; Heart Rate; Heart Transplantation; Heart-Assist Devices; HEK293 Cells; Heme; Heme Oxygenase-1; Hemolysis; Hemorrhage; Hepatitis B; Hepatitis B e Antigens; Hepatitis B Surface Antigens; Hepatitis B virus; Hepatitis B, Chronic; Hepatocytes; Hexoses; High-Throughput Nucleotide Sequencing; Hippo Signaling Pathway; Histamine; Histamine Agonists; Histidine; Histone Deacetylase 2; HIV Infections; HIV Reverse Transcriptase; HIV-1; Homebound Persons; Homeodomain Proteins; Homosexuality, Male; Hospice and Palliative Care Nursing; HSP70 Heat-Shock Proteins; Humans; Hyaluronan Receptors; Hydrogen; Hydrogen Peroxide; Hydrogen-Ion Concentration; Hydrolysis; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Hypoglycemia; Hypoglycemic Agents; Hypoxia; Idiopathic Interstitial Pneumonias; Imaging, Three-Dimensional; Imatinib Mesylate; Immunotherapy; Implementation Science; Incidence; INDEL Mutation; Induced Pluripotent Stem Cells; Industrial Waste; Infant; Infant, Newborn; Inflammation; Inflammation Mediators; Infliximab; Infusions, Intravenous; Inhibitory Concentration 50; Injections; Insecticides; Insulin-Like Growth Factor Binding Protein 5; Insulin-Secreting Cells; Interleukin-1; Interleukin-17; Interleukin-8; Internship and Residency; Intestines; Intracellular Signaling Peptides and Proteins; Ion Transport; Iridaceae; Iridoid Glucosides; Islets of Langerhans Transplantation; Isodon; Isoflurane; Isotopes; Italy; Joint Instability; Ketamine; Kidney; Kidney Failure, Chronic; Kidney Function Tests; Kidney Neoplasms; Kinetics; Klebsiella pneumoniae; Knee Joint; Kruppel-Like Factor 4; Kruppel-Like Transcription Factors; Lactate Dehydrogenase 5; Laparoscopy; Laser Therapy; Lasers, Semiconductor; Lasers, Solid-State; Laurates; Lead; Leukocyte L1 Antigen Complex; Leukocytes, Mononuclear; Light; Lipid Peroxidation; Lipopolysaccharides; Liposomes; Liver; Liver Cirrhosis; Liver Neoplasms; Liver Transplantation; Locomotion; Longitudinal Studies; Lopinavir; Lower Urinary Tract Symptoms; Lubricants; Lung; Lung Diseases, Interstitial; Lung Neoplasms; Lymphocyte Activation; Lymphocytes, Tumor-Infiltrating; Lymphoma, Mantle-Cell; Lysosomes; Macrophages; Male; Manganese Compounds; MAP Kinase Kinase 4; Mass Screening; Maternal Health; Medicine, Chinese Traditional; Melanoma, Experimental; Memantine; Membrane Glycoproteins; Membrane Proteins; Mesenchymal Stem Cell Transplantation; Metal Nanoparticles; Metalloendopeptidases; Metalloporphyrins; Methadone; Methane; Methicillin-Resistant Staphylococcus aureus; Mexico; Mice; Mice, Inbred BALB C; Mice, Inbred C57BL; Mice, Inbred ICR; Mice, Knockout; Mice, Nude; Mice, SCID; Mice, Transgenic; Microarray Analysis; Microbial Sensitivity Tests; Microbiota; Micronutrients; MicroRNAs; Microscopy, Confocal; Microsomes, Liver; Middle Aged; Milk; Milk, Human; Minority Groups; Mitochondria; Mitochondrial Membranes; Mitochondrial Proteins; Models, Animal; Models, Molecular; Molecular Conformation; Molecular Docking Simulation; Molecular Dynamics Simulation; Molecular Epidemiology; Molecular Structure; Molecular Weight; Multilocus Sequence Typing; Multimodal Imaging; Muscle Strength; Muscle, Skeletal; Muscular Diseases; Mutation; Mycobacterium tuberculosis; Myocardial Stunning; Myristates; NAD(P)H Dehydrogenase (Quinone); Nanocomposites; Nanogels; Nanoparticles; Nanotechnology; Naphthalenes; Nasal Cavity; National Health Programs; Necrosis; Needs Assessment; Neoadjuvant Therapy; Neonicotinoids; Neoplasm Invasiveness; Neoplasm Metastasis; Neoplasm Proteins; Neoplasm Recurrence, Local; Neoplasm Staging; Neoplasm Transplantation; Neoplasms; Neoplastic Stem Cells; Netherlands; Neuroblastoma; Neuroprotective Agents; Neutrophils; NF-kappa B; NFATC Transcription Factors; Nicotiana; Nicotine; Nitrates; Nitrification; Nitrites; Nitro Compounds; Nitrogen; Nitrogen Dioxide; North Carolina; Nuclear Magnetic Resonance, Biomolecular; Nuclear Proteins; Nucleic Acid Hybridization; Nucleosomes; Nutrients; Obesity; Obesity, Morbid; Oceans and Seas; Oncogene Protein v-akt; Oncogenes; Oocytes; Open Reading Frames; Osteoclasts; Osteogenesis; Osteoporosis; Osteoporosis, Postmenopausal; Outpatients; Ovarian Neoplasms; Ovariectomy; Overweight; Oxazines; Oxidants; Oxidation-Reduction; Oxidative Stress; Oxides; Oxidoreductases; Oxygen; Oxygen Inhalation Therapy; Oxygenators, Membrane; Ozone; Paclitaxel; Paenibacillus; Pain Measurement; Palliative Care; Pancreatic Neoplasms; Pandemics; Parasympathetic Nervous System; Particulate Matter; Pasteurization; Patient Preference; Patient Satisfaction; Pediatric Obesity; Permeability; Peroxiredoxins; Peroxynitrous Acid; Pharmaceutical Services; Pharmacists; Pharmacy; Phaseolus; Phenotype; Phoeniceae; Phosphates; Phosphatidylinositol 3-Kinases; Phospholipid Transfer Proteins; Phospholipids; Phosphorus; Phosphorylation; Photoperiod; Photosynthesis; Phylogeny; Physical Endurance; Physicians; Pilot Projects; Piperidines; Pituitary Adenylate Cyclase-Activating Polypeptide; Plant Extracts; Plant Leaves; Plant Proteins; Plant Roots; Plaque, Atherosclerotic; Pneumonia; Pneumonia, Viral; Point-of-Care Testing; Polyethylene Glycols; Polymers; Polysorbates; Pore Forming Cytotoxic Proteins; Positron Emission Tomography Computed Tomography; Positron-Emission Tomography; Postprandial Period; Poverty; Pre-Exposure Prophylaxis; Prediabetic State; Predictive Value of Tests; Pregnancy; Pregnancy Trimester, First; Pregnancy, High-Risk; Prenatal Exposure Delayed Effects; Pressure; Prevalence; Primary Graft Dysfunction; Primary Health Care; Professional Role; Professionalism; Prognosis; Progression-Free Survival; Prolactin; Promoter Regions, Genetic; Proof of Concept Study; Proportional Hazards Models; Propylene Glycol; Prospective Studies; Prostate; Protein Binding; Protein Biosynthesis; Protein Isoforms; Protein Kinase Inhibitors; Protein Phosphatase 2; Protein Processing, Post-Translational; Protein Serine-Threonine Kinases; Protein Structure, Tertiary; Protein Transport; Proteoglycans; Proteome; Proto-Oncogene Proteins c-akt; Proto-Oncogene Proteins c-myc; Proto-Oncogene Proteins c-ret; Proto-Oncogene Proteins p21(ras); Proton Pumps; Protons; Protoporphyrins; Pseudomonas aeruginosa; Pseudomonas fluorescens; Pulmonary Artery; Pulmonary Disease, Chronic Obstructive; Pulmonary Gas Exchange; Pulmonary Veins; Pyrazoles; Pyridines; Pyrimidines; Qualitative Research; Quinoxalines; Rabbits; Random Allocation; Rats; Rats, Sprague-Dawley; Rats, Wistar; Receptors, Histamine H3; Receptors, Immunologic; Receptors, Transferrin; Recombinant Proteins; Recurrence; Reference Values; Referral and Consultation; Regional Blood Flow; Registries; Regulon; Renal Insufficiency, Chronic; Reperfusion Injury; Repressor Proteins; Reproducibility of Results; Republic of Korea; Research Design; Resistance Training; Respiration, Artificial; Respiratory Distress Syndrome; Respiratory Insufficiency; Resuscitation; Retinal Dehydrogenase; Retreatment; Retrospective Studies; Reverse Transcriptase Inhibitors; Rhinitis, Allergic; Ribosomal Proteins; Ribosomes; Risk Assessment; Risk Factors; Ritonavir; Rivers; RNA Interference; RNA-Seq; RNA, Messenger; RNA, Ribosomal, 16S; RNA, Small Interfering; Rosuvastatin Calcium; Rural Population; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Salivary Ducts; Salivary Gland Neoplasms; San Francisco; SARS-CoV-2; Satiation; Satiety Response; Schools; Schools, Pharmacy; Seasons; Seawater; Selection, Genetic; Sequence Analysis, DNA; Serine-Threonine Kinase 3; Sewage; Sheep; Sheep, Domestic; Shock, Hemorrhagic; Signal Transduction; Silver; Silymarin; Single Photon Emission Computed Tomography Computed Tomography; Sirolimus; Sirtuin 1; Skin; Skin Neoplasms; Skin Physiological Phenomena; Sleep Initiation and Maintenance Disorders; Social Class; Social Participation; Social Support; Soil; Soil Microbiology; Solutions; Somatomedins; Soot; Specimen Handling; Spectrophotometry, Ultraviolet; Spectroscopy, Fourier Transform Infrared; Spectrum Analysis; Spinal Fractures; Spirometry; Staphylococcus aureus; STAT1 Transcription Factor; STAT3 Transcription Factor; Streptomyces coelicolor; Stress, Psychological; Stroke; Stroke Volume; Structure-Activity Relationship; Students, Medical; Students, Pharmacy; Substance Abuse Treatment Centers; Sulfur Dioxide; Surface Properties; Surface-Active Agents; Surveys and Questionnaires; Survival Analysis; Survival Rate; Survivin; Sweden; Swine; Swine, Miniature; Sympathetic Nervous System; T-Lymphocytes, Regulatory; Talaromyces; Tandem Mass Spectrometry; tau Proteins; Telemedicine; Telomerase; Telomere; Telomere Homeostasis; Temperature; Terminally Ill; Th1 Cells; Thiamethoxam; Thiazoles; Thiophenes; Thioredoxin Reductase 1; Thrombosis; Thulium; Thyroid Cancer, Papillary; Thyroid Carcinoma, Anaplastic; Thyroid Neoplasms; Time Factors; Titanium; Tomography, Emission-Computed, Single-Photon; Tomography, X-Ray Computed; TOR Serine-Threonine Kinases; Transcription Factor AP-1; Transcription Factors; Transcription, Genetic; Transcriptional Activation; Transcriptome; Transforming Growth Factor beta1; Transistors, Electronic; Translational Research, Biomedical; Transplantation Tolerance; Transplantation, Homologous; Transportation; Treatment Outcome; Tretinoin; Tuberculosis, Multidrug-Resistant; Tuberculosis, Pulmonary; Tubulin Modulators; Tumor Microenvironment; Tumor Necrosis Factor Inhibitors; Tumor Necrosis Factor-alpha; Twins; Ultrasonic Therapy; Ultrasonography; Ultraviolet Rays; United States; Up-Regulation; Uranium; Urethra; Urinary Bladder; Urodynamics; Uromodulin; Uveitis; Vasoconstrictor Agents; Ventricular Function, Left; Vero Cells; Vesicular Transport Proteins; Viral Nonstructural Proteins; Visual Acuity; Vital Capacity; Vitamin D; Vitamin D Deficiency; Vitamin K 2; Vitamins; Volatilization; Voriconazole; Waiting Lists; Waste Disposal, Fluid; Wastewater; Water Pollutants, Chemical; Whole Genome Sequencing; Wine; Wnt Signaling Pathway; Wound Healing; Wounds and Injuries; WW Domains; X-linked Nuclear Protein; X-Ray Diffraction; Xanthines; Xenograft Model Antitumor Assays; YAP-Signaling Proteins; Yogurt; Young Adult; Zebrafish; Zebrafish Proteins; Ziziphus | 2016 |
Phase I safety and pharmacodynamic of inecalcitol, a novel VDR agonist with docetaxel in metastatic castration-resistant prostate cancer patients.
We conducted a phase I multicenter trial in naïve metastatic castrate-resistant prostate cancer patients with escalating inecalcitol dosages, combined with docetaxel-based chemotherapy. Inecalcitol is a novel vitamin D receptor agonist with higher antiproliferative effects and a 100-fold lower hypercalcemic activity than calcitriol.. Safety and efficacy were evaluated in groups of three to six patients receiving inecalcitol during a 21-day cycle in combination with docetaxel (75 mg/m2 every 3 weeks) and oral prednisone (5 mg twice a day) up to six cycles. Primary endpoint was dose-limiting toxicity (DLT) defined as grade 3 hypercalcemia within the first cycle. Efficacy endpoint was ≥30% PSA decline within 3 months.. Eight dose levels (40-8,000 μg) were evaluated in 54 patients. DLT occurred in two of four patients receiving 8,000 μg/day after one and two weeks of inecalcitol. Calcemia normalized a few days after interruption of inecalcitol. Two other patients reached grade 2, and the dose level was reduced to 4,000 μg. After dose reduction, calcemia remained within normal range and grade 1 hypercalcemia. The maximum tolerated dose was 4,000 μg daily. Respectively, 85% and 76% of the patients had ≥30% PSA decline within 3 months and ≥50% PSA decline at any time during the study. Median time to PSA progression was 169 days.. High antiproliferative daily inecalcitol dose has been safely used in combination with docetaxel and shows encouraging PSA response (≥30% PSA response: 85%; ≥50% PSA response: 76%). A randomized phase II study is planned. Topics: Aged; Aged, 80 and over; Alkynes; Antineoplastic Combined Chemotherapy Protocols; Cholecalciferol; Disease Progression; Docetaxel; Humans; Male; Middle Aged; Neoplasm Metastasis; Prostate-Specific Antigen; Prostatic Neoplasms, Castration-Resistant; Receptors, Calcitriol; Taxoids; Treatment Outcome | 2014 |
19 other study(ies) available for cholecalciferol and Neoplasm-Metastasis
Article | Year |
---|---|
High salt diet may promote progression of breast tumor through eliciting immune response.
Dietary patterns are believed to regulate tumor progression by altering the tumor microenvironment. Of note, a high salt diet is a risk factor for various diseases. However, the role of high salt intake in the progression of cancers remains unknown.. We constructed an in vivo high salt diet model in MMTV-PyVT mice with spontaneous tumor-forming properties to explore the role of a high salt diet in the progression of breast cancer as well as the modulation of the tumor microenvironment. Also, in vitro experiments were performed to understand the mechanism.. High salt intake accelerates the growth of breast cancer and facilitates lung metastasis, as well as increases the level of Th17 cells. Increased Th17 cells might promote the growth of breast cancer via the secretion of IL-17F to activate the MAPK signaling pathway in breast cancer cells. Topics: Animals; Breast Neoplasms; Carcinogenesis; Cholecalciferol; Coculture Techniques; Diet; Female; Humans; Immunity; Lymphocyte Activation; MAP Kinase Signaling System; MCF-7 Cells; Mice; Mice, Transgenic; Neoplasm Metastasis; Sodium Chloride, Dietary; Th17 Cells | 2020 |
VD
Low vitamin D levels increase the risk of developing several cancer types including breast cancer. Breast cancer is the most incident cancer among women worldwide and in the United States. Our previous study showed that vitamin D (VD Topics: Actins; Breast Neoplasms; Cell Line, Tumor; Cell Movement; Cholecalciferol; Female; Gene Expression Regulation, Enzymologic; Gene Expression Regulation, Neoplastic; Glycolysis; Humans; Hydrogen-Ion Concentration; Hypoxia; MCF-7 Cells; Mechanistic Target of Rapamycin Complex 1; Neoplasm Invasiveness; Neoplasm Metastasis; Proton-Translocating ATPases; Vitamin D | 2019 |
MART-10, a 1α,25(OH)
Breast cancer ranks second in the list of cancer-related deaths for women. Even under multidisciplinary treatment, 25-50% of patients with breast cancer still ultimately develop metastasis, leading to poor prognosis. In addition to inducing angiogenesis, vascular endothelial growth factor-A (VEGF-A) is believed to directly increase cancer cell metastatic potential and overexpression of VEGF-A is associated with higher invasiveness of breast cancer. 1α,25(OH). Western blot, migration and invasion assays, enzyme-linked immunosorbent assay, and immunofluorescent stain were applied in this study.. VEGF-A increased cell migration and invasion in estrogen receptor-positive (ER+) breast cancer MCF-7 cells. VEGF-A induced an autocrine loop in MCF-7 cells as VEGF-A treatment increased both VEGF-A expression and secretion. The expression of VEGF receptor type 2 (VEGFR2) and neuropilin 1 was also up-regulated by VEGF-A in MCF-7 cells. In addition, F-actin synthesis and LIM domain kinase 1 (LIMK-1) phosphorylation were increased by VEGF-A. VEGF-A also increased β-catenin expression and nuclear translocation of both β-catenin and nuclear factor-ĸB (NF-ĸB), indicating increased β-catenin and NF-ĸB activity. 1α,25(OH) Topics: Antineoplastic Agents; Blotting, Western; Breast Neoplasms; Cholecalciferol; Enzyme-Linked Immunosorbent Assay; Female; Fluorescent Antibody Technique; Humans; Lim Kinases; MCF-7 Cells; Neoplasm Metastasis; Neuropilin-1; Receptors, Estrogen; Vascular Endothelial Growth Factor A; Vascular Endothelial Growth Factor Receptor-2 | 2018 |
The Vitamin D Analog, MART-10, Attenuates Triple Negative Breast Cancer Cells Metastatic Potential.
Regarding breast cancer treatment, triple negative breast cancer (TNBC) is a difficult issue. Most TNBC patients die of cancer metastasis. Thus, to develop a new regimen to attenuate TNBC metastatic potential is urgently needed. MART-10 (19-nor-2α-(3-hydroxypropyl)-1α,25(OH)₂D₃), the newly-synthesized 1α,25(OH)₂D₃ analog, has been shown to be much more potent in cancer growth inhibition than 1α,25(OH)₂D₃ and be active in vivo without inducing obvious side effect. In this study, we demonstrated that both 1α,25(OH)₂D₃ and MART-10 could effectively repress TNBC cells migration and invasion with MART-10 more effective. MART-10 and 1α,25(OH)₂D₃ induced cadherin switching (upregulation of E-cadherin and downregulation of N-cadherin) and downregulated P-cadherin expression in MDA-MB-231 cells. The EMT(epithelial mesenchymal transition) process in MDA-MB-231 cells was repressed by MART-10 through inhibiting Zeb1, Zeb2, Slug, and Twist expression. LCN2, one kind of breast cancer metastasis stimulator, was also found for the first time to be repressed by 1α,25(OH)₂D₃ and MART-10 in breast cancer cells. Matrix metalloproteinase-9 (MMP-9) activity was also downregulated by MART-10. Furthermore, F-actin synthesis in MDA-MB-231 cells was attenuated as exposure to 1α,25(OH)₂D₃ and MART-10. Based on our result, we conclude that MART-10 could effectively inhibit TNBC cells metastatic potential and deserves further investigation as a new regimen to treat TNBC. Topics: Cadherins; Cell Line, Tumor; Cell Movement; Cholecalciferol; Gene Expression Regulation, Neoplastic; Humans; Neoplasm Invasiveness; Neoplasm Metastasis; Triple Negative Breast Neoplasms | 2016 |
MART-10, a newly synthesized vitamin D analog, represses metastatic potential of head and neck squamous carcinoma cells.
Even with multidisciplinary treatment, the prognosis and quality of life of patients diagnosed with head and neck squamous cell carcinoma (HNSCC) are still not satisfactory. Previously, 19-Nor-2α-(3-hydroxypropyl)-1α,25(OH)2D3 (MART-10), the new brand 1α,25(OH)2D3 analog, has been demonstrated to be an effective drug to inhibit HNSCC growth in vitro. Since most cancer patients die of metastasis, in this study, the antimetastatic effect of MART-10 on HNSCC was investigated. Our results reveal that both 1α,25(OH)2D3 and MART-10 effectively repressed the migration and invasion of HNSCC cells, with MART-10 being much more potent than 1α,25(OH)2D3. The antimetastatic effect of 1α,25(OH)2D3 and MART-10 was mediated by attenuation of epithelial-mesenchymal transition (EMT), which was supported by the finding that the expression of EMT-inducing transcriptional factors, Sail and Twist, was inhibited by 1α,25(OH)2D3 and MART-10. The upregulation of E-cadherin and downregulation of N-cadherin in FaDu cells induced by both drugs further confirmed the repression of EMT. In addition, 1α,25(OH)2D3 and MART-10 treatment inhibited intracellular MMP-9 expression and extracellular MMP activity in FaDu cells. Collectively, our results suggest that the less-calcemia 1α,25(OH)2D3 analog, MART-10, is a promising drug for HNSCC treatment. Further clinical studies are warranted. Topics: Antineoplastic Agents; Carcinoma, Squamous Cell; Cell Line, Tumor; Cholecalciferol; Down-Regulation; Epithelial-Mesenchymal Transition; Head and Neck Neoplasms; Humans; Matrix Metalloproteinase 9; Neoplasm Metastasis; Vitamin D | 2016 |
MART-10, the vitamin D analog, is a potent drug to inhibit anaplastic thyroid cancer cell metastatic potential.
The survival rate of anaplastic thyroid cancer (ATC) is still very poor due to its fast growth and high metastatic potential. Currently, no effective treatment is available. The active form of vitamin D3, 1α,25(OH)2D3, has been shown to have a anti-metastatic effect in pre-clinical studies, however induction of hypercalcemia hampered its clinical application. The new class of less-calcemic vitamin D analog, 19-nor-2α-(3-hydroxypropyl)-1α,25-dihydroxyvitamin D3 (MART-10), is much more potent than 1α,25(OH)2D3 to repress cancer growth and metastasis in a variety of cancers. In this study, we demonstrated that both 1α,25(OH)2D3 and MART-10 could effectively inhibit the migration and invasion of ATC cells, 8305C and 8505C, with MART-10 much more potent than 1α,25(OH)2D3. The anti-metastatic effect of 1α,25(OH)2D3 and MART-10 on ATC cells is mediated by reversal of cadherin switch (upregulation of E-cadherin and downregulation of N-cadherin), which led to the attenuation of EMT process, and decrease of F-actin formation. We further showed that the expressions of Slug, the EMT-related transcriptional factor, and MMP-9 were inhibited by 1α,25(OH)2D3 and MART-10 in 8505C cells, but not in 8303C cells. Since metastasis is the important cause of ATC-related death, our results strongly encourage the further in vivo study of MART-10 application against ATC. Topics: Actins; Antineoplastic Agents; Cell Line, Tumor; Cell Movement; Cholecalciferol; Drug Screening Assays, Antitumor; Epithelial-Mesenchymal Transition; Humans; Matrix Metalloproteinase 2; Matrix Metalloproteinase 9; Neoplasm Metastasis; Thyroid Neoplasms | 2015 |
MART-10, a less calcemic vitamin D analog, is more potent than 1α,25-dihydroxyvitamin D3 in inhibiting the metastatic potential of MCF-7 breast cancer cells in vitro.
With the recent advance in breast cancer therapy, the survival rate of breast cancer patients has improved greatly. In spite of the progress, 25-50% of breast cancer patients eventually will develop metastasis. Due to limited early detection methods, metastasis is usually diagnosed at the late stages beyond recovery likely due to resistance to currently available breast cancer therapies. Thus, a new strategy to prevent cancer cell growth and repress tumor metastasis is desirable. The active form of vitamin D3, 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3], has anti-invasion and anti-migration properties in pre-clinical studies, yet its clinical application has been hampered by its hypercalcemic side effect. Previously, we have demonstrated that a new class of less-calcemic vitamin D analog, 19-nor-2α-(3-hydroxypropyl)-1α,25-dihydroxyvitamin D3 (MART-10), is 1000-fold more active than 1α,25(OH)2D3 in suppressing MCF-7 cells growth through cell cycle arrest and apoptosis induction. In the current study, we show for the first time that MART-10 is more active than 1α,25(OH)2D3 in preventing MCF-7 cell invasion and migration likely mediated through the upregulation of E-cadherin, and the downregulation of Snail, Slug, and Twist, the transcription factors implicated in epithelial-mesenchymal transition (EMT), as well as MMP-13. Based on the current in vitro and the highly anti-tumor characteristics of MART-10 in a pancreatic xenograft model, MART-10 is deemed as a promising candidate for breast cancer treatment. Further in vivo animal study comparing MART-10 with 1α,25(OH)2D3 and other potent and less calcemic analogs of vitamin D is warranted. Topics: Antigens, CD; Antineoplastic Agents; Breast Neoplasms; Cadherins; Cell Movement; Cholecalciferol; Epithelial-Mesenchymal Transition; Female; Gene Expression; Humans; Matrix Metalloproteinase 2; Matrix Metalloproteinase 9; MCF-7 Cells; Neoplasm Invasiveness; Neoplasm Metastasis; Nuclear Proteins; Snail Family Transcription Factors; Transcription Factors; Twist-Related Protein 1; Vitamin D | 2014 |
The vitamin D analog, MART-10, represses metastasis potential via downregulation of epithelial-mesenchymal transition in pancreatic cancer cells.
Pancreatic cancer (PDA) is a devastating disease and there is no effective treatment available at present. To develop new regiments against PDA is urgently needed. Previously we have shown that vitamin D analog, MART-10 (19-nor-2α-(3-hydroxypropyl)-1α,25(OH)2D3), exerted potent antiproliferative effect on PDA in vitro and in vivo without causing hypercalcemia. Since metastasis is the major cause of PDA-related death, we therefore investigate the anti-metastasis effect of MART-10 on PDA. Our results showed that both 1α,25(OH)2D3 and MART-10 repressed migration and invasion of BxPC-3 and PANC cells with MART-10 much more potent than 1α,25(OH)2D3. 1α,25(OH)2D3 and MART-10 inhibited epithelial-mesenchymal transition (EMT) in pancreatic cancer cells through downregulation of Snail, Slug, and Vimentin expression in BxPC-3 and PANC cells. MART-10 further blocked cadherin switch (from E-cadherin to N-cadherin) in BxPC-3 cells. The F-actin synthesis in the cytoplasm of BxPC-3 cells was also repressed by 1α,25(OH)2D3 and MART-10 as determined by immunofluorescence stain. Both 1α,25(OH)2D3 and MART-10 decreased MMP-2 and -9 secretion in BxPC-3 cells as determined by western blot and zymography. Collectively, MART-10 should be deemed as a promising regimen against PDA. Topics: Antigens, CD; Antineoplastic Agents; Cadherins; Cell Line, Tumor; Cell Movement; Cholecalciferol; Down-Regulation; Epithelial-Mesenchymal Transition; Humans; Matrix Metalloproteinase 13; Matrix Metalloproteinase 2; Matrix Metalloproteinase 9; Neoplasm Metastasis; Pancreatic Neoplasms | 2014 |
Administration of vitamin D3 improves antimetastatic efficacy of cancer vaccine therapy of Lewis lung carcinoma.
To analyze antitumor efficacy of experimental cancer vaccine therapy combined with introduction of vitamin D3 (VD3) for treatment of Lewis lung carcinoma (3LL).. Cancer vaccines composed from recombinant murine beta-defensin-2 (mBD-2) and 3LL cell lysate, or DNA, coding for mBD-2-Muc1 fusion construct cloned in pcDNA3+ vector, were prepared and used for intradermal vaccination. Experimental cancer vaccines introduced i. d. at therapeutic and prophylactic regimens to 3LL-bearing C57Bl mice, were applied alone or in combination with VD3 (administered per os) and/or low-dose cyclophosphamide (CP, administered intraperitoneal). Efficacy of treatments was analyzed by primary tumor growth dynamics indexes and by metastasis rate in vaccinated animals.. As it has been shown, administration of the protein-based vaccine composed from mBD-2 and 3LL cell lysate in combination with VD3 and CP, but not in VD3 free setting, led to significant suppression of primary tumor growth (p < 0.005) and had significant antimetastatic effect. Introduction of VD3 with or without CP in the scheme of treatment with mBD- 2-Muc1-DNA vaccine at therapeutic regimen has led to significant suppression of primary tumor (p < 0.05) and metastasis volumes (p < 0.005), while in the groups of animals treated with DNA-vaccine + VD3 with or without CP at prophylactic regimen, significant antimetastatic effect (p < 0.05) and elevation of average life-span (p < 0.05) have been registered.. The results of this pilot study have shown promising clinical effects of VD3 administration in combination with cancer vaccinotherapy in vivo. Topics: Animals; beta-Defensins; Cancer Vaccines; Carcinoma, Lewis Lung; Cells, Cultured; Cholecalciferol; Combined Modality Therapy; Gene Expression Regulation, Neoplastic; Humans; Male; Mice; Mice, Inbred C57BL; Mucin-1; Neoplasm Metastasis; Treatment Outcome | 2010 |
Cotargeting tumor and tumor endothelium effectively inhibits the growth of human prostate cancer in adenovirus-mediated antiangiogenesis and oncolysis combination therapy.
Tumor-endothelial interaction contributes to local prostate tumor growth and distant metastasis. In this communication, we designed a novel approach to target both cancer cells and their "crosstalk" with surrounding microvascular endothelium in an experimental hormone refractory human prostate cancer model. We evaluated the in vitro and in vivo synergistic and/or additive effects of a combination of conditional oncolytic adenovirus plus an adenoviral-mediated antiangiogenic therapy. In the in vitro study, we demonstrated that human umbilical vein endothelial cells (HUVEC) and human C4-2 androgen-independent (AI) prostate cancer cells, when infected with an antiangiogenic adenoviral (Ad)-Flk1-Fc vector secreting a soluble form of Flk1, showed dramatically inhibited proliferation, migration and tubular formation of HUVEC endothelial cells. C4-2 cells showed maximal growth inhibition when coinfected with Ad-Flk1-Fc and Ad-hOC-E1, a conditional replication-competent Ad vector with viral replication driven by a human osteocalcin (hOC) promoter targeting both prostate cancer epithelial and stromal cells. Using a three-dimensional (3D) coculture model, we found that targeting C4-2 cells with Ad-hOC-E1 markedly decreased tubular formation in HUVEC, as visualized by confocal microscopy. In a subcutaneous C4-2 tumor xenograft model, tumor volume was decreased by 40-60% in animals treated with Ad-Flk1-Fc or Ad-hOC-E1 plus vitamin D3 alone and by 90% in a combined treatment group, compared to untreated animals in an 8-week treatment period. Moreover, three of 10 (30%) pre-established tumors completely regressed when animals received combination therapy. Cotargeting tumor and tumor endothelium could be a promising gene therapy strategy for the treatment of both localized and metastatic human prostate cancer. Topics: Adenocarcinoma; Adenoviridae; Angiogenesis Inhibitors; Animals; Antineoplastic Combined Chemotherapy Protocols; Cell Line, Tumor; Cell Proliferation; Cholecalciferol; Endothelial Cells; Genetic Therapy; Genetic Vectors; Humans; Immunohistochemistry; Male; Mice; Mice, Nude; Microscopy, Confocal; Neoplasm Metastasis; Neovascularization, Pathologic; Osteocalcin; Promoter Regions, Genetic; Prostatic Neoplasms; Tetrazolium Salts; Thiazoles; Transplantation, Heterologous; Vascular Endothelial Growth Factor Receptor-2 | 2005 |
Vitamin D3 treatment to diminish the levels of immune suppressive CD34+ cells increases the effectiveness of adoptive immunotherapy.
Tumor growth can increase the number of immature bone marrow-derived CD34+ cells that exhibit natural suppressor (NS) activity toward T-cell function. Using a metastatic Lewis lung carcinoma (LLC-LN7) tumor model, these CD34+ NS cells were shown to be present within the s.c. primary tumor tissue, but their levels declined after treatment with the inducer of myeloid cell differentiation, vitamin D3. Therefore, studies determined whether vitamin D3 treatment to diminish the CD34+ NS cell levels in LLC-LN7-bearing mice would enhance (a) intratumoral immune reactivity and (b) the antitumor activity of adoptive therapy consisting of tumor-reactive lymph node cells. The results showed that vitamin D3 treatment alone increased the intratumoral CD8+ cell content and the activity of the intratumoral infiltrate, as detected by production of interferon-gamma and expression of the p55 IL-2 receptor. Although vitamin D3 treatment had no effect on the size of the primary tumor, it lessened the extent of tumor metastasis. Treating mice with the combination of vitamin D3 and adoptive immunotherapy significantly reduced metastasis in mice with established tumors, and reduced both metastasis and locoregional recurrence after surgical excision of the primary tumor. These studies demonstrate that vitamin D3 treatment increases intratumoral T-cell immune reactivity, and that coupling vitamin D3 treatment to diminish levels of CD34+ NS cells with adoptive immunotherapy enhances the effectiveness of the adoptively transferred tumor-reactive lymph node cells at limiting both metastasis and locoregional tumor recurrence. Topics: Animals; Antigens, CD34; Carcinoma, Lewis Lung; CD4-Positive T-Lymphocytes; CD8-Positive T-Lymphocytes; Cholecalciferol; Immunosuppression Therapy; Immunotherapy, Adoptive; Lung Neoplasms; Lymph Nodes; Mice; Mice, Inbred C57BL; Neoplasm Metastasis; Recurrence | 2000 |
1alpha,25-dihydroxyvitamin D3 inhibits in vitro invasiveness through the extracellular matrix and in vivo pulmonary metastasis of B16 mouse melanoma.
We investigated the role of 1alpha,25-dihydroxyvitamin D3 (1alpha,25(OH)2D3) in modulating tumor cell invasiveness through the extracellular matrix (ECM) and pulmonary metastasis in B16 mouse melanoma. The pretreatment of B16 cells for 48 hours with 1alpha,25(OH)2D3 significantly inhibited in vitro invasiveness through the ECM by a mechanism that is not directly correlated with the inhibition of cell proliferation. When cells were treated with 1alpha,25(OH)2D3 for only 8 hours during the assay, no inhibitory effect was observed, suggesting that pretreatment with the hormone for more than 8 hours is necessary to inhibit the invasive potential of B16 cells. The activity of B16 cells to adhere to reconstituted basement membrane (Matrigel) and type IV collagenolysis was inhibited by pretreatment of the cells with 1alpha,25(OH)2D3 for 48 hours. Cell motility was not influenced by the hormone. Mice were inoculated subcutaneously with 3 x 106 B16 cells and were given 1alpha,25(OH)2D3 (0.5 microg/kg) or vehicle daily for 28 days, beginning 1 day after tumor inoculation. In the 1alpha,25(OH)2D3-treated group, no significant inhibition in exponential tumor growth, body weight, and serum level of calcium was observed until the twenty-eighth day. The mean serum concentration of the hormone was about 50 ng/mL, and there were no significant changes in its concentration during the treatment period. In both spontaneous and experimental metastasis models of tumor-bearing mice, treatment with 1alpha,25(OH)2D3 inhibited pulmonary metastasis. These findings suggest that 1alpha,25(OH)2D3 acts on B16 cells, inhibiting invasiveness through the ECM that is caused by the inhibition of cell adhesion to the ECM and the degradation of the ECM by the cells. 1alpha,25(OH)2D3 may have the potential to inhibit metastasis by a mechanism that is not exclusively based on its anti-cell proliferative effect. Topics: Animals; Body Weight; Calcium; Cell Adhesion; Cell Division; Cell Movement; Cholecalciferol; Collagen; DNA, Neoplasm; Extracellular Matrix; Lung Neoplasms; Melanoma, Experimental; Mice; Mice, Inbred C57BL; Neoplasm Invasiveness; Neoplasm Metastasis; Receptors, Calcitriol; Skin Neoplasms; Tumor Cells, Cultured | 1999 |
Vitamin D3 and ceramide reduce the invasion of tumor cells through extracellular matrix components by elevating protein phosphatase-2A.
Increasing phosphorylation reactions by protein kinase A (PKA) or reducing dephosphorylation reactions of protein phosphatase-2A (PP-2A) increases the invasiveness of Lewis lung carcinoma (LLC) cells, as measured by their capacity to traverse extracellular matrix (ECM)-coated filters. Metastatic LLC-LN7 variants have reduced PP-2A activity when compared to nonmetastatic LLC-C8 variants. Immunoblotting showed that this reduced level of PP-2A activity was not due to reduced levels of the PP-2A catalytic (C) subunit. The cellular PP-2A activity could be stimulated by addition of C2-ceramide to LLC-LN7 lysates, or by incubating cells with either C2-ceramide or with a noncalcemic analog of vitamin D3, which has previously been shown to stimulate the release of ceramide. These treatments to elevate PP-2A activity in metastatic LLC-LN7 cells resulted in a decline in their capacity to invade through select (ECM) components, particularly through vitronectin and laminin. Underscoring the importance of PP-2A in limiting the invasiveness of tumor cells was the demonstration that LLC-LN7 cell transfectants overexpressing the PP-2A C alpha subunit were less invasive through ECM components than the wild-type cells. Invasion by these cells was further reduced by additionally increasing PP-2A activity by incubation with C2-ceramide or the vitamin D3 analog. These results suggest a role of a vitamin D3/ceramide/PP-2A pathway in limiting the invasiveness of tumor cells through select ECM components. Topics: Animals; Blotting, Western; Cholecalciferol; Enzyme Activation; Extracellular Matrix; Humans; Laminin; Lung Neoplasms; Mice; Neoplasm Invasiveness; Neoplasm Metastasis; Okadaic Acid; Phosphoprotein Phosphatases; Protein Phosphatase 2; Sphingosine; Transfection; Vitronectin | 1996 |
Treating tumor-bearing mice with vitamin D3 diminishes tumor-induced myelopoiesis and associated immunosuppression, and reduces tumor metastasis and recurrence.
Metastatic Lewis lung carcinoma (LLC-LN7) tumors that secrete granulocyte/macrophage-colony-stimulating factor (GM-CSF) stimulate myelopoiesis and induce bone marrow-derived immunosuppressor cells that are homologous to granulocyte/macrophage progenitor cells. In vitro treatment of the LLC-LN7 cells with 1 alpha,25-dihydroxyvitamin D3 reduced tumor cell production of suppressor-inducing activity, although suppressor-inducing activity could be restored by reconstituting the tumor supernatants with recombinant GM-CSF. Treatment of mice having LLC-LN7 tumors with vitamin D3 reduced tumor production of GM-CSF and the frequency of myeloid progenitor cells. This was associated with a reduction in immunosuppressor activity and an increase in T cell function. Vitamin D3 treatment of mice having palpable tumors transiently retarded tumor growth, but caused a prominent reduction in tumor metastasis. Treating mice with vitamin D3 after tumor excision resulted in a reduction in the tumor-induced myelopoietic stimulation and associated immunosuppressive activity, and enhanced T cell function. These mice had a markedly reduced incidence of tumor recurrence. The results of this study suggest that vitamin D3 treatment of mice with GM-CSF-secreting tumors can interrupt the myelopoiesis-associated immunosuppressor cascade and, in turn, reduce tumor metastasis and recurrence. Topics: Animals; Carcinoma, Lewis Lung; Cholecalciferol; Female; Granulocyte-Macrophage Colony-Stimulating Factor; Hematopoiesis; Immunity, Cellular; Mice; Mice, Inbred C57BL; Neoplasm Metastasis; T-Lymphocytes; T-Lymphocytes, Regulatory | 1995 |
[Bone metastasis with osteomalacia in cancer of the prostate. 2 cases].
Topics: Biopsy; Bone Neoplasms; Calcitonin; Calcium; Cholecalciferol; Humans; Hypocalcemia; Intestinal Absorption; Male; Middle Aged; Neoplasm Metastasis; Osteomalacia; Phosphorus; Prostatic Neoplasms | 1975 |
[Therapy of osteodystrophia deformans (Paget's disease)].
Topics: Aged; Antineoplastic Agents; Bone Neoplasms; Calcinosis; Calcitonin; Cholecalciferol; Cyclophosphamide; Ergocalciferols; Fractures, Spontaneous; Humans; Hypercalcemia; Kidney Calculi; Lung Neoplasms; Male; Neoplasm Metastasis; Osteitis Deformans; Plicamycin; Podophyllin; Quinones; Sarcoma; Vitamin D | 1974 |
[Pulmonary metastases from a thyroid carcinoma in childhood after thorium-X treatment (author's transl)].
Topics: Administration, Topical; Child; Cholecalciferol; Female; Hemangioma; Humans; Iodine Radioisotopes; Lung; Lung Neoplasms; Neoplasm Metastasis; Neoplasms, Glandular and Epithelial; Oxygen Consumption; Radiography; Radioisotopes; Thorium; Thyroid Function Tests; Thyroid Neoplasms | 1974 |
Effect of hypocalcemia and vitamin D-induced hypercalcemia on the incidence of metastases in rats.
Topics: Animals; Calcium; Cholecalciferol; Hypercalcemia; Hypocalcemia; Neoplasm Metastasis; Parathyroid Glands; Rats; Sarcoma, Experimental; Thyroidectomy | 1969 |
FAILURE OF OSTEOLYTIC AGENTS TO INDUCE SKELETAL METASTASES IN RATS WITH SARCOMA.
Topics: Animals; Bone Neoplasms; Carcinogens; Cholecalciferol; Injections, Subcutaneous; Methylcholanthrene; Neoplasm Metastasis; Neoplasms; Parathyroid Glands; Pathology; Pharmacology; Rats; Research; Sarcoma; Sarcoma, Experimental; Sodium Chloride; Tissue Extracts | 1965 |