cholecalciferol has been researched along with Encephalitis* in 3 studies
2 review(s) available for cholecalciferol and Encephalitis
Article | Year |
---|---|
Diet and Alzheimer's dementia - Nutritional approach to modulate inflammation.
Alzheimer's disease (AD) is the most common neurodegenerative disease causing dementia in the elderly population. Due to the fact that there is still no cure for Alzheimer's dementia and available treatment strategies bring only symptomatic benefits, there is a pressing demand for other effective strategies such as diet. Since the inflammation hypothesis gained considerable significance in the AD pathogenesis, elucidating the modulatory role of dietary factors on inflammation may help to prevent, delay the onset and slow the progression of AD. Current evidence clearly shows that synergistic action of combined supplementation and complex dietary patterns provides stronger benefits than any single component considered separately. Recent studies reveal the growing importance of novel factors such as dietary advanced glycation end products (d-AGE), gut microbiota, butyrate and vitamin D. This paper summarizes the available evidence of pro- and anti-inflammatory activity of some dietary components including fatty acids, vitamins, flavonoids, polyphenols, probiotics and d-AGE, and their potential for AD prevention and treatment. Topics: Alzheimer Disease; Butyrates; Caffeine; Cholecalciferol; Curcumin; Diet; Dietary Supplements; Encephalitis; Fatty Acids; Fatty Acids, Omega-3; Gastrointestinal Microbiome; Glycation End Products, Advanced; Humans; Meat; Resveratrol; Vitamin B Complex | 2019 |
Re-balancing of inflammation and abeta immunity as a therapeutic for Alzheimer's disease-view from the bedside.
Morbidities of aging and Alzheimer's disease (AD) have been related to defective functions of both T cells and macrophages leading to brain amyloidosis and inflammation. In AD patients, "inflammaging" may be associated with an increase of incompetent memory T cells and inflammatory cytokines produced by macrophages, whereas defective clearance of amyloid-beta 1-42 (Abeta) may be related to defective transcription of immune genes necessary for Abeta phagocytosis, beta-1,4-mannosyl-glycoprotein 4-beta-N-acetylglucosaminyltransferase and Toll-like receptors. However, AD shows considerable heterogeneity of disease manifestations and mechanisms. The approaches to re-balancing Abeta immunity and inflammation are being pursued in transgenic animal models and peripheral blood mononuclear cells of patients. The regulatory signaling pathways of microglial phagocytosis and inflammation involving co-receptors and transforming growth factor-beta have been considerably clarified in animal studies. Natural immunostimulating therapies using vitamin D3 and curcuminoids have been developed in macrophages of AD patients. AD patients possess two types of macrophages: a majority has "Type I", which are improved by curcuminoids and vitamin D3; whereas a minority has "Type II" responding positively to vitamin D3 but not to curcuminoids. Other nutritional substances, such as plant polyphenols and omega-3 fatty acids, may inhibit inflammation and stimulate immunity. More invasive immune approaches involve Abeta vaccine and cytokine antagonists. Increased inflammation may represent the "first hit", and defective transcription of immune genes the "second hit" in the pathogenesis of AD. Topics: Adjuvants, Immunologic; Alzheimer Disease; Amyloid beta-Peptides; Animals; Cholecalciferol; Curcumin; Encephalitis; Humans; Immunity, Innate; Macrophages; Phagocytosis; Transforming Growth Factor beta | 2010 |
1 other study(ies) available for cholecalciferol and Encephalitis
Article | Year |
---|---|
Treatment with dexamethasone and vitamin D3 attenuates neuroinflammatory age-related changes in rat hippocampus.
Among the changes which occur in the brain with age is an increase in hippocampal concentration of proinflammatory cytokines like interleukin-1beta (IL-1beta) and an increase in IL-1beta-induced signaling. Here we demonstrate that the increase in IL-1beta concentration is accompanied by an increase in expression of IL-1 type I receptor (IL-1RI) and an age-related increase in microglial activation, as shown by increased expression of the cell surface marker, major histocompatibility complex II (MHCII) and increased MHCII staining. The evidence indicates that these age-related changes were abrogated in hippocampus of aged rats treated with dexamethasone and vitamin D3. Similarly, the age-related increases in activation of the stress-activated protein kinase, c-Jun N-terminal kinase (JNK), as well as caspase-3 and PARP were all attenuated in hippocampal tissue prepared from rats that received dexamethasone and vitamin D3. The data indicate that dexamethasone and vitamin D3 ameliorated the age-related increase in IFNgamma and suggest that IFNgamma may be the trigger leading to microglial activation, since it increases MHCII mRNA and IL-1beta release from cultured glia. In parallel with its ability to decrease microglial activation in vivo, we report that treatment of cultured glia with dexamethasone and vitamin D3 blocked the lipopolysaccharide increased MHCII mRNA and IL-1beta concentration, while the IL-1beta-induced increases in activation of JNK and caspase 3 in cultured neurons were also reversed by treatment with dexamethasone and vitamin D3. The data suggest that the antiinflammatory effect of dexamethasone and vitamin D3 derives from their ability to downreguate microglial activation. Topics: Aging; Animals; Animals, Newborn; Anti-Inflammatory Agents; Caspase 3; Cells, Cultured; Cholecalciferol; Cytokines; Dexamethasone; Disease Models, Animal; Encephalitis; Enzyme Activation; Hippocampus; Lipopolysaccharides; Male; MAP Kinase Kinase 4; Neuroglia; Neurons; Rats; Rats, Wistar; Time Factors | 2007 |