Page last updated: 2024-10-24

chloroquine and Neoplasms

chloroquine has been researched along with Neoplasms in 118 studies

Chloroquine: The prototypical antimalarial agent with a mechanism that is not well understood. It has also been used to treat rheumatoid arthritis, systemic lupus erythematosus, and in the systemic therapy of amebic liver abscesses.
chloroquine : An aminoquinoline that is quinoline which is substituted at position 4 by a [5-(diethylamino)pentan-2-yl]amino group at at position 7 by chlorine. It is used for the treatment of malaria, hepatic amoebiasis, lupus erythematosus, light-sensitive skin eruptions, and rheumatoid arthritis.

Neoplasms: New abnormal growth of tissue. Malignant neoplasms show a greater degree of anaplasia and have the properties of invasion and metastasis, compared to benign neoplasms.

Research Excerpts

ExcerptRelevanceReference
"It is a kind of cytokine storm, which involves increased activity of TNF-α, IL-1, IL-6, and INF-γ."5.62Can chloroquine/hydroxychloroquine prove efficient in cancer cachexia? A hypothesis in the era of COVID-19. ( Czerw, A; Deptała, A; Kapala, P; Kiedrowska, M; Kiedrowski, M; Skoczynska, A, 2021)
" Chloroquine and hydroxychloroquine, with an original indication to prevent or cure malaria, have been successfully used to treat several infectious (HIV, Q fever, Whipple's disease, fungal infections), rheumatological (systemic lupus erythematosus, antiphospholipid antibody syndrome, rheumatoid arthritis, Sjögren's syndrome), and other immunological diseases."4.98Current and Future Use of Chloroquine and Hydroxychloroquine in Infectious, Immune, Neoplastic, and Neurological Diseases: A Mini-Review. ( Koudriavtseva, T; Plantone, D, 2018)
"Chloroquine (CHQ) is a cheap, relatively well tolerated drug initially developed for the treatment of malaria in the 1930s."4.84Chloroquine: novel uses & manifestations. ( Cooper, RG; Magwere, T, 2008)
"Epoxyazadiradione (1), a major compound derived from Neem oil, showed modest anti-plasmodial activity against CQ-resistant and CQ-sensitive strains of the most virulent human malaria parasite P."3.85Synthesis and evaluation of anti-plasmodial and cytotoxic activities of epoxyazadiradione derivatives. ( Allanki, AD; Ashok Yadav, P; Jain, N; Pavan Kumar, C; Sijwali, PS; Siva, B; Suresh Babu, K; Veerabhadra Rao, A, 2017)
"Serum-deprived U251 glioma, B16 melanoma and L929 fibrosarcoma cells were treated with chloroquine in vitro."3.78Chloroquine-mediated lysosomal dysfunction enhances the anticancer effect of nutrient deprivation. ( Arsikin, K; Bumbasirevic, V; Harhaji-Trajkovic, L; Janjetovic, K; Kravic-Stevovic, T; Pantovic, A; Petricevic, S; Ristic, B; Tovilovic, G; Trajkovic, V; Zogovic, N, 2012)
"We then emphasize how autophagy and cancer cells interacting with one another is a promising therapeutic target in cancer treatment."3.01Recent Update and Drug Target in Molecular and Pharmacological Insights into Autophagy Modulation in Cancer Treatment and Future Progress. ( Islam, M; Kim, B; Parvez, MAK; Rahman, MA; Rahman, MS; Saikat, ASM, 2023)
"Targeting tumors by regulating autophagy has become a therapeutic strategy of interest."2.82Repurposing drugs in autophagy for the treatment of cancer: From bench to bedside. ( Bu, F; Liu, J; Ouyang, L; Shuai, W; Sun, Q; Zhang, J, 2022)
"While not approved for cancer therapy, there are ongoing clinical trials to evaluate their safety and efficacy."2.82Autophagy Agents in Clinical Trials for Cancer Therapy: A Brief Review. ( Al-Zeidaneen, SA; Algwaiz, GF; Karim, NA; Mohsen, S; Nasef, N; Sobash, PT, 2022)
"Given that CQ loses its anticancer activity in acidic and hypoxic environment within a tumor, novel CQ analogs and/or their formulations are under active investigation to improve their physicochemical properties and biological activity."2.72Repurposing Chloroquine Analogs as an Adjuvant Cancer Therapy. ( Fong, W; To, KKW, 2021)
"However, the link between some anticancer mechanisms, clinical efficacy and pharmacological safety has not yet been fully defined."2.72Chloroquine and hydroxychloroquine in antitumor therapies based on autophagy-related mechanisms. ( Bezerra, DP; Ferreira, JRO; Ferreira, PMP; Militão, GCG; Sousa, RWR, 2021)
"A number of anticancer drugs with 4-aminoquinazoline core are in the market, e."2.61Recent advancements of 4-aminoquinazoline derivatives as kinase inhibitors and their applications in medicinal chemistry. ( Das, D; Hong, J, 2019)
"Malaria and cancer are chronic diseases."2.61Ferrocene-Based Compounds with Antimalaria/Anticancer Activity. ( Aderibigbe, BA; Peter, S, 2019)
"Clinically approved cancer therapies include small molecules, antibodies, and nanoparticles."2.58Chloroquine and nanoparticle drug delivery: A promising combination. ( Busatto, S; Ferrari, M; Mody, K; Pelt, J; Thompson, EA; Wolfram, J, 2018)
"In the context of cancer, Chloroquine was found to have direct effects on different types of malignancies that could potentiate chemotherapies."2.53Time to use a dose of Chloroquine as an adjuvant to anti-cancer chemotherapies. ( Pascolo, S, 2016)
"Chloroquine has been shown to stabilize p53 and induce p53-dependent apoptosis or cell cycle arrest."2.52The utility of chloroquine in cancer therapy. ( Liao, Z; Xiao, HT; Zhang, LJ; Zhang, Y, 2015)
"Herein, we review the effects of anti-cancer agents that impact metabolism administered concurrently with autophagy inhibitors on immune cells and consider the implications for patient response to therapy."2.48Autophagy inhibition in cancer therapy: metabolic considerations for antitumor immunity. ( Hughson, LR; Lum, JJ; Poon, VI; Schlie, K; Townsend, KN; Westerback, A, 2012)
"Autophagy has dual roles in cancer, acting as both a tumor suppressor by preventing the accumulation of damaged proteins and organelles and as a mechanism of cell survival that can promote the growth of established tumors."2.47The role of autophagy in cancer: therapeutic implications. ( Chee, CE; Huang, S; Sinicrope, FA; Yang, ZJ, 2011)
"Chloroquine (CQ), N'-(7-chloroquinolin-4-yl)-N,N-diethyl-pentane-1,4-diamine, is widely used as an effective and safe anti-malarial and anti-rheumatoid agent."2.45Chloroquine and its analogs: a new promise of an old drug for effective and safe cancer therapies. ( Lee, H; Solomon, VR, 2009)
"The sensitivity for lung cancer in 489 studies was 93 per cent."2.35Cancer diagnosis. The role of tumor-imaging radiopharmaceuticals. ( Silberstein, EB, 1976)
"It is a kind of cytokine storm, which involves increased activity of TNF-α, IL-1, IL-6, and INF-γ."1.62Can chloroquine/hydroxychloroquine prove efficient in cancer cachexia? A hypothesis in the era of COVID-19. ( Czerw, A; Deptała, A; Kapala, P; Kiedrowska, M; Kiedrowski, M; Skoczynska, A, 2021)
" In addition, CQ, Ku, and Rap in combination with RL2 decreased activity of lysosomal protease Cathepsin D."1.51Cytotoxic and Antitumor Activity of Lactaptin in Combination with Autophagy Inducers and Inhibitors. ( Bagamanshina, AV; Kähne, T; Kit, YY; Koval, OA; Kuligina, EV; Lavrik, IN; Nushtaeva, AA; Richter, M; Richter, VA; Starykovych, MO; Troitskaya, OS; Wohlfromm, F; Yunusova, AY, 2019)
"FQ enhances the anticancer activity of several chemotherapeutics suggesting its potential application as an adjuvant to existing anticancer therapy."1.46Ferroquine, the next generation antimalarial drug, has antitumor activity. ( Biot, C; Delcourt, P; Dewailly, E; Dubois, C; Gordienko, D; Kondratska, K; Kondratskyi, A; Lemière, S; Prevarskaya, N; Skryma, R; Slomianny, C; Toillon, RA; Vanden Abeele, F, 2017)
"Similar effects were confirmed in cancer cells bearing tumor-associated p53 mutations and in H1299 (p53 null) with overexpressed p53R175H and p53R273H mutant proteins."1.43Reactivation of mutant p53 by capsaicin, the major constituent of peppers. ( Cirone, M; D'Orazi, G; Garufi, A; Pistritto, G, 2016)
"We reported that cancer cells upregulate autophagy as a survival mechanism to acidic stress."1.40Acidic extracellular pH neutralizes the autophagy-inhibiting activity of chloroquine: implications for cancer therapies. ( Buoncervello, M; De Milito, A; Hägg-Olofsson, M; Linder, S; Pellegrini, P; Strambi, A; Zipoli, C, 2014)
"The EGFR high expressing cells and tumors investigated in this study are highly dependent on autophagy for growth and survival."1.39EGFR overexpressing cells and tumors are dependent on autophagy for growth and survival. ( Bussink, J; Jutten, B; Keulers, TG; Rouschop, KM; Savelkouls, K; Schaaf, MB; Span, PN; Theys, J; Vooijs, MA, 2013)
"Chloroquine has demonstrated high affinity for aldehyde dehydrogenase 1A1 (ALDH1), an enzyme expressed in the highly tumorigenic CD133+ brain tumor initiating subpopulation."1.38Synthesis and preliminary evaluation of n.c.a. iodoquine: a novel radiotracer with high uptake in cells with high ALDH1 expression. ( Chin, BB; Dai, D; Greer, KL; Hjelemand, A; Lascola, C; McDougald, D; McLendon, R; Metzler, SD; Reiman, R; Rich, J; Song, H; Storms, R; Vaidyanathan, G, 2012)
"Like the natural IgM, the epithelial cancer cell-derived IgM recognized a series of microbial antigens, such as single-stranded DNA, double-stranded DNA, lipopolysaccharide, and the HEp-2 cell antigen."1.38Spontaneous production of immunoglobulin M in human epithelial cancer cells. ( Geng, L; Hu, F; Huang, J; Liao, Q; Ma, T; Qiu, X; Shao, W; Yin, CC; Zhang, L; Zhao, L; Zheng, J, 2012)
"Autophagy inhibition is a novel cancer therapeutic strategy in the early stages of clinical trial testing."1.37Targeting autophagy addiction in cancer. ( Kimmelman, AC; Mancias, JD, 2011)
"Glutamine metabolism is crucial for cancer cell growth via the generation of intermediate molecules in the tricarboxylic acid (TCA) cycle, antioxidants and ammonia."1.37Glutamine fuels a vicious cycle of autophagy in the tumor stroma and oxidative mitochondrial metabolism in epithelial cancer cells: implications for preventing chemotherapy resistance. ( Flomenberg, N; Howell, A; Ko, YH; Lin, Z; Lisanti, MP; Martinez-Outschoorn, UE; Pestell, RG; Sotgia, F, 2011)
"In several human cancer cell lines, hypoxia increased transcription of the essential autophagy genes microtubule-associated protein 1 light chain 3beta (MAP1LC3B) and autophagy-related gene 5 (ATG5) through the transcription factors ATF4 and CHOP, respectively, which are regulated by PKR-like ER kinase (PERK, also known as EIF2AK3)."1.36The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5. ( Bussink, J; Dubois, L; Keulers, T; Koritzinsky, M; Lambin, P; Landuyt, W; Mujcic, H; Niessen, H; Rouschop, KM; Savelkouls, K; van den Beucken, T; van der Kogel, AJ; Voncken, JW; Wouters, BG, 2010)
"Chloroquine is a lysosomotropic agent that has been reported to enhance in vitro cytotoxicity of basic anticancer drugs."1.36Triggering liposomal drug release with a lysosomotropic agent. ( Lee, RJ; Li, H; Wu, J; Xiong, S; Yu, B, 2010)
"On the other hand, cotreatment of cancer cells with cetuximab and the mTOR inhibitor rapamycin resulted in an Atg-dependent and lysosomal inhibition-sensitive death of cancer cells that show only growth inhibition or weak apoptosis after cetuximab treatment, indicating that cell death may be achieved by activating the autophagy pathway in these cells."1.36Roles of autophagy in cetuximab-mediated cancer therapy against EGFR. ( Fan, Z; Li, X; Lu, Y; Pan, T, 2010)
"Thus, CQ is a very effective and cancer-specific chemosensitizer when used in combination with Akt inhibitors."1.35The efficacy and selectivity of tumor cell killing by Akt inhibitors are substantially increased by chloroquine. ( Hu, C; Lee, H; Solomon, VR; Ulibarri, G, 2008)
"Conversely, established tumors appear to utilize autophagy in order to survive periods of metabolic or hypoxic stress."1.35ARF, autophagy and tumor suppression. ( Murphy, ME; Pimkina, J, 2009)
"Tamoxifen is a known structural-mimic of cholesterol, which were both found to be similarly effective in preventing drug release from liposomes."1.29Tamoxifen decreases drug efflux from liposomes: relevance to its ability to reverse multidrug resistance in cancer cells? ( Kayyali, R; Marriott, C; Wiseman, H, 1994)
"Chloroquine phosphate pretreatment was employed prior to each antibody infusion to block receptor recycling and host-antigen processing."1.28Human-human monoclonal antibody directed against tumor surface antigen in the treatment of human malignancy. A pilot study. ( Alonso, K, 1991)

Research

Studies (118)

TimeframeStudies, this research(%)All Research%
pre-199026 (22.03)18.7374
1990's7 (5.93)18.2507
2000's9 (7.63)29.6817
2010's54 (45.76)24.3611
2020's22 (18.64)2.80

Authors

AuthorsStudies
Amewu, RK1
Chadwick, J1
Hussain, A1
Panda, S1
Rinki, R1
Janneh, O1
Ward, SA1
Miguel, C1
Burrell-Saward, H1
Vivas, L1
O'Neill, PM1
Srivastava, V1
Lee, H3
Ashok Yadav, P1
Pavan Kumar, C1
Siva, B1
Suresh Babu, K1
Allanki, AD1
Sijwali, PS1
Jain, N1
Veerabhadra Rao, A1
See, CS1
Kitagawa, M1
Liao, PJ1
Lee, KH1
Wong, J2
Lee, SH1
Dymock, BW1
Chu, XM1
Wang, C5
Liu, W1
Liang, LL1
Gong, KK1
Zhao, CY1
Sun, KL1
Das, D1
Hong, J1
Dou, X1
Sun, X2
Huang, H2
Jiang, L1
Jin, Z1
Liu, Y5
Zou, Y2
Li, Z3
Zhu, G1
Jin, H2
Jiao, N1
Zhang, L5
Liu, Z3
Bu, F1
Zhang, J4
Shuai, W1
Liu, J2
Sun, Q1
Ouyang, L1
Mohsen, S1
Sobash, PT1
Algwaiz, GF1
Nasef, N1
Al-Zeidaneen, SA1
Karim, NA1
Li, F2
Chen, T1
Wang, F4
Chen, J2
Zhang, Y7
Song, D1
Li, N1
Lin, XH1
Lin, L1
Zhuang, J1
Xie, D1
Lai, W1
Zhou, M1
Wang, J5
Xu, R2
Huang, J3
Zhang, R1
Li, G2
Rahman, MA1
Saikat, ASM1
Rahman, MS1
Islam, M1
Parvez, MAK1
Kim, B1
Phadatare, P1
Debnath, J1
Gao, Q1
He, X2
He, L1
Lin, J2
Wang, L2
Xie, Y1
Wu, A1
Li, J9
Gao, M1
Deng, H1
Wang, H3
Liu, R1
Hou, W1
Zhang, W1
Peter, S1
Aderibigbe, BA1
Varisli, L1
Cen, O1
Vlahopoulos, S2
Abdel Karim, N1
Gaber, O1
Aljohani, HM1
Eldessouki, I1
Bahassi, EM1
Morris, J1
Yang, B1
Ding, L1
Yao, H2
Chen, Y5
Shi, J1
Thorburn, A2
Shao, L1
Li, Y7
Huang, F1
Wang, X7
Lu, J3
Jia, F1
Pan, Z1
Cui, X2
Ge, G1
Deng, X1
Wu, Y2
Nguépy Keubo, FR1
Mboua, PC1
Djifack Tadongfack, T1
Fokouong Tchoffo, E1
Tasson Tatang, C1
Ide Zeuna, J1
Noupoue, EM1
Tsoplifack, CB1
Folefack, GO1
Kettani, M1
Bandelier, P1
Huo, J1
Li, H5
Yu, D1
Arulsamy, N1
AlAbbad, S1
Sardot, T1
Lekashvili, O1
Decato, D1
Lelj, F1
Alexander Ross, JB1
Rosenberg, E1
Nazir, H1
Muthuswamy, N1
Louis, C1
Jose, S1
Prakash, J1
Buan, MEM1
Flox, C1
Chavan, S1
Shi, X1
Kauranen, P1
Kallio, T1
Maia, G1
Tammeveski, K1
Lymperopoulos, N1
Carcadea, E1
Veziroglu, E1
Iranzo, A1
M Kannan, A1
Arunamata, A1
Tacy, TA1
Kache, S1
Mainwaring, RD1
Ma, M1
Maeda, K1
Punn, R1
Noguchi, S1
Hahn, S3
Iwasa, Y3
Ling, J2
Voccio, JP2
Kim, Y3
Song, J3
Bascuñán, J2
Chu, Y1
Tomita, M1
Cazorla, M1
Herrera, E1
Palomeque, E1
Saud, N1
Hoplock, LB1
Lobchuk, MM1
Lemoine, J1
Li, X11
Henson, MA1
Unsihuay, D1
Qiu, J1
Swaroop, S1
Nagornov, KO1
Kozhinov, AN1
Tsybin, YO1
Kuang, S1
Laskin, J1
Zin, NNINM1
Mohamad, MN1
Roslan, K1
Abdul Wafi, S1
Abdul Moin, NI1
Alias, A1
Zakaria, Y1
Abu-Bakar, N1
Naveed, A1
Jilani, K1
Siddique, AB1
Akbar, M1
Riaz, M1
Mushtaq, Z1
Sikandar, M1
Ilyas, S1
Bibi, I1
Asghar, A1
Rasool, G1
Irfan, M1
Li, XY1
Zhao, S1
Fan, XH1
Chen, KP1
Hua, W1
Liu, ZM1
Xue, XD1
Zhou, B2
Zhang, S2
Xing, YL1
Chen, MA1
Sun, Y1
Neradilek, MB1
Wu, XT1
Zhang, D2
Huang, W1
Cui, Y1
Yang, QQ1
Li, HW1
Zhao, XQ1
Hossein Rashidi, B1
Tarafdari, A1
Ghazimirsaeed, ST1
Shahrokh Tehraninezhad, E1
Keikha, F1
Eslami, B1
Ghazimirsaeed, SM1
Jafarabadi, M1
Silvani, Y1
Lovita, AND1
Maharani, A1
Wiyasa, IWA1
Sujuti, H1
Ratnawati, R1
Raras, TYM1
Lemin, AS1
Rahman, MM1
Pangarah, CA1
Kiyu, A1
Zeng, C2
Du, H1
Lin, D1
Jalan, D1
Rubagumya, F1
Hopman, WM1
Vanderpuye, V1
Lopes, G1
Seruga, B1
Booth, CM1
Berry, S1
Hammad, N1
Sajo, EA1
Okunade, KS1
Olorunfemi, G1
Rabiu, KA1
Anorlu, RI1
Xu, C3
Xiang, Y1
Xu, X1
Zhou, L2
Dong, X1
Tang, S1
Gao, XC1
Wei, CH1
Zhang, RG1
Cai, Q1
He, Y1
Tong, F1
Dong, JH1
Wu, G1
Dong, XR1
Tang, X1
Tao, F1
Xiang, W1
Zhao, Y2
Jin, L1
Tao, H1
Lei, Y1
Gan, H1
Huang, Y1
Chen, L3
Shan, A1
Zhao, H2
Wu, M2
Ma, Q1
Zhang, E1
Xue, F1
Deng, L1
Liu, L2
Yan, Z2
Wang, Y2
Meng, J1
Chen, G2
Anastassiadou, M1
Bernasconi, G1
Brancato, A1
Carrasco Cabrera, L1
Greco, L1
Jarrah, S1
Kazocina, A1
Leuschner, R1
Magrans, JO1
Miron, I1
Nave, S1
Pedersen, R1
Reich, H1
Rojas, A1
Sacchi, A1
Santos, M1
Theobald, A1
Vagenende, B1
Verani, A1
Du, L1
Liu, X1
Ren, Y1
Li, P1
Jiao, Q1
Meng, P1
Wang, YS2
Zhou, X2
Wang, W1
Wang, S2
Hou, J1
Zhang, A1
Lv, B1
Gao, C1
Pang, D1
Lu, K1
Ahmad, NH1
Zhu, J3
Zhuang, T1
Tu, J1
Zhao, Z1
Qu, Y1
Lee, DF1
Shen, J3
Wen, L1
Huang, G2
Xie, X1
Zhao, Q1
Hu, W1
Wu, X2
Li, M1
Li, W2
Wu, W1
Du, F1
Ji, H1
Yang, X2
Xu, Z2
Wan, L1
Wen, Q2
Cho, CH1
Zou, C1
Xiao, Z1
Liao, J1
Su, X1
Bi, Z1
Su, Q1
Wei, Y2
Gao, Y2
Na, KJ1
Choi, H1
Oh, HR1
Kim, YH1
Lee, SB1
Jung, YJ1
Koh, J1
Park, S1
Lee, HJ1
Jeon, YK1
Chung, DH1
Paeng, JC1
Park, IK1
Kang, CH1
Cheon, GJ1
Kang, KW1
Lee, DS1
Kim, YT1
Pajuelo-Lozano, N1
Alcalá, S1
Sainz, B1
Perona, R1
Sanchez-Perez, I1
Logotheti, S1
Marquardt, S1
Gupta, SK1
Richter, C1
Edelhäuser, BAH1
Engelmann, D1
Brenmoehl, J1
Söhnchen, C1
Murr, N1
Alpers, M1
Singh, KP1
Wolkenhauer, O1
Heckl, D1
Spitschak, A1
Pützer, BM1
Liao, Y1
Cheng, J1
Kong, X1
Li, S1
Zhang, M4
Zhang, H1
Yang, T2
Dong, Y1
Xu, Y1
Yuan, Z1
Cao, J1
Zheng, Y2
Luo, Z1
Mei, Z1
Yao, Y1
Liang, C1
Yang, H1
Song, Y1
Yu, K1
Zhu, C1
Huang, Z1
Qian, J1
Ge, J1
Hu, J2
Mi, Y1
Kong, H1
Xi, D1
Yan, W1
Luo, X1
Ning, Q1
Chang, X2
Zhang, T2
Wang, Q2
Rathore, MG1
Reddy, K1
Chen, H1
Shin, SH1
Ma, WY1
Bode, AM1
Dong, Z1
Mu, W1
Liu, C3
Gao, F1
Qi, Y1
Lu, H1
Zhang, X4
Cai, X1
Ji, RY1
Hou, Y3
Tian, J2
Shi, Y2
Ying, S1
Tan, M1
Feng, G1
Kuang, Y1
Chen, D1
Wu, D3
Zhu, ZQ1
Tang, HX1
Shi, ZE1
Kang, J1
Liu, Q1
Qi, J2
Mu, J1
Cong, Z1
Chen, S2
Fu, D1
Celestrin, CP1
Rocha, GZ1
Stein, AM1
Guadagnini, D1
Tadelle, RM1
Saad, MJA1
Oliveira, AG1
Bianconi, V1
Bronzo, P1
Banach, M1
Sahebkar, A1
Mannarino, MR1
Pirro, M1
Patsourakos, NG1
Kouvari, M1
Kotidis, A1
Kalantzi, KI1
Tsoumani, ME1
Anastasiadis, F1
Andronikos, P1
Aslanidou, T1
Efraimidis, P1
Georgiopoulos, A1
Gerakiou, K1
Grigoriadou-Skouta, E1
Grigoropoulos, P1
Hatzopoulos, D1
Kartalis, A1
Lyras, A1
Markatos, G1
Mikrogeorgiou, A1
Myroforou, I1
Orkopoulos, A1
Pavlidis, P1
Petras, C1
Riga, M1
Skouloudi, M1
Smyrnioudis, N1
Thomaidis, K1
Tsikouri, GE1
Tsikouris, EI1
Zisimos, K1
Vavoulis, P1
Vitali, MG1
Vitsas, G1
Vogiatzidis, C1
Chantanis, S1
Fousas, S1
Panagiotakos, DB1
Tselepis, AD1
Jungen, C1
Alken, FA1
Eickholt, C1
Scherschel, K1
Kuklik, P1
Klatt, N1
Schwarzl, J1
Moser, J1
Jularic, M1
Akbulak, RO1
Schaeffer, B1
Willems, S1
Meyer, C1
Nowak, JK1
Szczepanik, M1
Trypuć, M1
Pogorzelski, A1
Bobkowski, W1
Grytczuk, M1
Minarowska, A1
Wójciak, R1
Walkowiak, J1
Lu, Y2
Xi, J1
Li, C1
Chen, W2
Hu, X1
Zhang, F1
Wei, H1
Wang, Z1
Gurzu, S1
Jung, I1
Sugimura, H2
Stefan-van Staden, RI1
Yamada, H1
Natsume, H1
Iwashita, Y1
Szodorai, R1
Szederjesi, J1
Yari, D1
Ehsanbakhsh, Z1
Validad, MH1
Langroudi, FH1
Esfandiari, H1
Prager, A1
Hassanpour, K1
Kurup, SP1
Mets-Halgrimson, R1
Yoon, H1
Zeid, JL1
Mets, MB1
Rahmani, B1
Araujo-Castillo, RV1
Culquichicón, C1
Solis Condor, R1
Efendi, F1
Sebayang, SK1
Astutik, E1
Hadisuyatmana, S1
Has, EMM1
Kuswanto, H1
Foroutan, T1
Ahmadi, F1
Moayer, F1
Khalvati, S1
Zhang, Q3
Lyu, Y1
Yu, N1
Wen, Z1
Hou, H1
Zhao, T1
Gupta, A1
Khosla, N1
Govindasamy, V1
Saini, A1
Annapurna, K1
Dhakate, SR1
Akkaya, Ö1
Chandgude, AL1
Dömling, A1
Harnett, J1
Oakes, K1
Carè, J1
Leach, M1
Brown, D1
Cramer, H1
Pinder, TA1
Steel, A1
Anheyer, D1
Cantu, J1
Valle, J1
Flores, K1
Gonzalez, D1
Valdes, C1
Lopez, J1
Padilla, V1
Alcoutlabi, M1
Parsons, J1
Núñez, K1
Hamed, M1
Fort, D1
Bruce, D1
Thevenot, P1
Cohen, A1
Weber, P1
Menezes, AMB1
Gonçalves, H1
Perez-Padilla, R1
Jarvis, D1
de Oliveira, PD1
Wehrmeister, FC1
Mir, S1
Ryan, CM1
Bellingham, G1
Singh, M2
Waseem, R1
Eckert, DJ1
Chung, F1
Hegde, H1
Shimpi, N1
Panny, A1
Glurich, I1
Christie, P1
Acharya, A1
English, KL1
Downs, M1
Goetchius, E1
Buxton, R1
Ryder, JW1
Ploutz-Snyder, R1
Guilliams, M1
Scott, JM1
Ploutz-Snyder, LL1
Martens, C1
Goplen, FK1
Aasen, T1
Gjestad, R1
Nordfalk, KF1
Nordahl, SHG1
Inoue, T1
Soshi, S1
Kubota, M1
Marumo, K1
Mortensen, NP1
Caffaro, MM1
Patel, PR2
Uddin, MJ1
Aravamudhan, S1
Sumner, SJ1
Fennell, TR1
Gal, RL1
Cohen, NJ1
Kruger, D1
Beck, RW1
Bergenstal, RM1
Calhoun, P1
Cushman, T1
Haban, A1
Hood, K1
Johnson, ML1
McArthur, T1
Olson, BA1
Weinstock, RS1
Oser, SM1
Oser, TK1
Bugielski, B1
Strayer, H1
Aleppo, G1
Maruyama, H1
Hirayama, K1
Yamashita, M1
Ohgi, K1
Tsujimoto, R1
Takayasu, M1
Shimohata, H1
Kobayashi, M1
Buscagan, TM1
Rees, DC1
Jaborek, JR1
Zerby, HN1
Wick, MP1
Fluharty, FL1
Moeller, SJ1
Razavi, P1
Dickler, MN1
Shah, PD1
Toy, W1
Brown, DN1
Won, HH1
Li, BT1
Shen, R1
Vasan, N1
Modi, S1
Jhaveri, K1
Caravella, BA1
Patil, S1
Selenica, P1
Zamora, S1
Cowan, AM1
Comen, E1
Singh, A1
Covey, A1
Berger, MF1
Hudis, CA1
Norton, L1
Nagy, RJ1
Odegaard, JI1
Lanman, RB1
Solit, DB1
Robson, ME1
Lacouture, ME1
Brogi, E1
Reis-Filho, JS1
Moynahan, ME1
Scaltriti, M1
Chandarlapaty, S1
Papouskova, K1
Moravcova, M1
Masrati, G1
Ben-Tal, N1
Sychrova, H1
Zimmermannova, O1
Fang, J1
Fan, Y1
Luo, T2
Su, H1
Tsetseris, L1
Anthopoulos, TD1
Liu, SF1
Zhao, K1
Sacan, O1
Turkyilmaz, IB1
Bayrak, BB1
Mutlu, O1
Akev, N1
Yanardag, R1
Gruber, S1
Kamnoedboon, P1
Özcan, M1
Srinivasan, M1
Jo, YH1
Oh, HK1
Jeong, SY1
Lee, BG1
Zheng, J2
Guan, H1
Li, D3
Tan, H1
Maji, TK1
J R, A1
Mukherjee, S1
Alexander, R1
Mondal, A1
Das, S1
Sharma, RK1
Chakraborty, NK1
Dasgupta, K1
Sharma, AMR1
Hawaldar, R1
Pandey, M1
Naik, A1
Majumdar, K1
Pal, SK1
Adarsh, KV1
Ray, SK1
Karmakar, D1
Ma, Y2
Gao, W1
Ma, S1
Lin, W1
Zhou, T1
Wu, T1
Wu, Q1
Ye, C1
Jiang, F1
Yuan, D1
Chen, Q1
Hong, M1
Chen, K1
Hussain, M1
Razi, SS1
Yildiz, EA1
Zhao, J1
Yaglioglu, HG1
Donato, MD1
Jiang, J1
Jamil, MI1
Zhan, X1
Chen, F1
Cheng, D1
Wu, CT1
Utsunomiya, T1
Ichii, T1
Fujinami, S1
Nakajima, K1
Sanchez, DM1
Raucci, U1
Ferreras, KN1
Martínez, TJ1
Mordi, NA1
Mordi, IR1
Singh, JS1
McCrimmon, RJ1
Struthers, AD1
Lang, CC1
Wang, XW1
Yuan, LJ1
Yang, Y2
Chen, WF1
Luo, R1
Yang, K1
Amarasiri, SS1
Attanayake, AP1
Arawwawala, LDAM1
Jayatilaka, KAPW1
Mudduwa, LKB1
Ogunsuyi, O2
Akanni, O1
Alabi, O1
Alimba, C1
Adaramoye, O1
Cambier, S1
Eswara, S1
Gutleb, AC1
Bakare, A1
Gu, Z1
Cong, J1
Pellegrini, M1
Palmieri, S1
Ricci, A1
Serio, A1
Paparella, A1
Lo Sterzo, C1
Jadeja, SD1
Vaishnav, J1
Mansuri, MS1
Shah, C1
Mayatra, JM1
Shah, A1
Begum, R1
Song, H3
Lian, Y1
Wan, T1
Schultz-Lebahn, A1
Skipper, MT1
Hvas, AM1
Larsen, OH1
Hijazi, Z1
Granger, CB1
Hohnloser, SH1
Westerbergh, J1
Lindbäck, J1
Alexander, JH1
Keltai, M1
Parkhomenko, A1
López-Sendón, JL1
Lopes, RD1
Siegbahn, A1
Wallentin, L1
El-Tarabany, MS1
Saleh, AA1
El-Araby, IE1
El-Magd, MA1
van Ginkel, MPH1
Schijven, MP1
van Grevenstein, WMU1
Schreuder, HWR1
Pereira, EDM1
da Silva, J1
Carvalho, PDS1
Grivicich, I1
Picada, JN1
Salgado Júnior, IB1
Vasques, GJ1
Pereira, MADS1
Reginatto, FH1
Ferraz, ABF1
Vasilenko, EA1
Gorshkova, EN1
Astrakhantseva, IV1
Drutskaya, MS1
Tillib, SV1
Nedospasov, SA1
Mokhonov, VV1
Nam, YW1
Cui, M1
Orfali, R1
Viegas, A1
Nguyen, M1
Mohammed, EHM1
Zoghebi, KA1
Rahighi, S1
Parang, K1
Patterson, KC1
Kahanovitch, U1
Gonçalves, CM1
Hablitz, JJ1
Staruschenko, A1
Mulkey, DK1
Olsen, ML1
Gu, L1
Cao, X1
Mukhtar, A1
Wu, K1
Zhang, YY1
Zhu, Y1
Lu, DZ1
Dong, W1
Bi, WJ1
Feng, XJ1
Wen, LM1
Sun, H1
Qi, MC1
Chang, CC1
Dinh, TK1
Lee, YA1
Wang, FN1
Sung, YC1
Yu, PL1
Chiu, SC1
Shih, YC1
Wu, CY1
Huang, YD1
Lu, TT1
Wan, D1
Sakizadeh, J1
Cline, JP1
Snyder, MA1
Kiely, CJ1
McIntosh, S1
Jiang, X1
Cao, JW1
Zhao, CK1
Yang, R1
Zhang, QY1
Chen, KJ2
Liu, H1
He, Z1
Chen, B1
Wu, J2
Du, X1
Moore, J1
Blank, BR1
Eksterowicz, J1
Sutimantanapi, D1
Yuen, N1
Metzger, T1
Chan, B1
Huang, T1
Chen, X1
Duong, F1
Kong, W1
Chang, JH1
Sun, J2
Zavorotinskaya, T1
Ye, Q1
Junttila, MR1
Ndubaku, C1
Friedman, LS2
Fantin, VR1
Sun, D1
Fei, P1
Xie, Q1
Jiang, Y1
Feng, H1
Chang, Y1
Kang, H1
Xing, M1
Shao, Z1
Yuan, C1
Allan, R1
Canham, K1
Wallace, R1
Singh, D1
Ward, J1
Cooper, A1
Newcomb, C1
Nammour, S1
El Mobadder, M1
Maalouf, E1
Namour, M1
Namour, A1
Rey, G1
Matamba, P1
Matys, J1
Zeinoun, T1
Grzech-Leśniak, K1
Segabinazi Peserico, C1
Garozi, L1
Zagatto, AM1
Machado, FA1
Hirth, JM1
Dinehart, EE1
Lin, YL1
Kuo, YF1
Nouri, SS1
Ritchie, C1
Volow, A1
Li, B2
McSpadden, S1
Dearman, K1
Kotwal, A1
Sudore, RL1
Ward, L1
Thakur, A1
Kondadasula, SV1
Ji, K1
Schalk, DL1
Bliemeister, E1
Ung, J1
Aboukameel, A1
Casarez, E1
Sloane, BF1
Lum, LG1
Xiao, M1
Feng, X1
Gao, R1
Du, B1
Brooks, T1
Zwirner, J1
Hammer, N1
Ondruschka, B1
Jermy, M1
Luengo, A1
Marzo, I1
Reback, M1
Daubit, IM1
Fernández-Moreira, V1
Metzler-Nolte, N1
Gimeno, MC1
Tonchev, I1
Heberman, D1
Peretz, A1
Medvedovsky, AT1
Gotsman, I1
Rashi, Y1
Poles, L1
Goland, S1
Perlman, GY1
Danenberg, HD1
Beeri, R1
Shuvy, M1
Fu, Q1
Yang, D1
Sarapulova, A1
Pang, Q1
Meng, Y1
Wei, L1
Ehrenberg, H1
Kim, CC1
Jeong, SH1
Oh, KH1
Nam, KT1
Sun, JY1
Ning, J1
Duan, Z1
Kershaw, SV1
Rogach, AL1
Gao, Z1
Wang, T1
Li, Q1
Cao, T1
Guo, L1
Fu, Y1
Seeger, ZL1
Izgorodina, EI1
Hue, S1
Beldi-Ferchiou, A1
Bendib, I1
Surenaud, M1
Fourati, S1
Frapard, T1
Rivoal, S1
Razazi, K1
Carteaux, G1
Delfau-Larue, MH1
Mekontso-Dessap, A1
Audureau, E1
de Prost, N1
Gao, SS1
Duangthip, D1
Lo, ECM1
Chu, CH1
Roberts, W1
Rosenheck, RA1
Miyake, T1
Kimoto, E1
Luo, L1
Mathialagan, S1
Horlbogen, LM1
Ramanathan, R1
Wood, LS1
Johnson, JG1
Le, VH1
Vourvahis, M1
Rodrigues, AD1
Muto, C1
Furihata, K1
Sugiyama, Y1
Kusuhara, H1
Gong, Q1
Song, W1
Sun, B1
Cao, P1
Gu, S1
Zhou, G1
Toma, C1
Khandhar, S1
Zalewski, AM1
D'Auria, SJ1
Tu, TM1
Jaber, WA1
Cho, J2
Suwandaratne, NS1
Razek, S1
Choi, YH1
Piper, LFJ1
Watson, DF1
Banerjee, S1
Xie, S1
Lindsay, AP1
Bates, FS1
Lodge, TP1
Hao, Y1
Chapovetsky, A1
Liu, JJ1
Welborn, M1
Luna, JM1
Do, T1
Haiges, R1
Miller Iii, TF1
Marinescu, SC1
Lopez, SA1
Compter, I1
Eekers, DBP1
Hoeben, A1
Rouschop, KMA1
Reymen, B1
Ackermans, L1
Beckervordersantforth, J1
Bauer, NJC1
Anten, MM1
Wesseling, P1
Postma, AA1
De Ruysscher, D1
Lambin, P2
Qiang, L1
Yang, S1
Cui, YH1
He, YY1
Kumar, SK1
Jacobus, SJ1
Cohen, AD1
Weiss, M1
Callander, N1
Singh, AK1
Parker, TL1
Menter, A1
Parsons, B1
Kumar, P1
Kapoor, P1
Rosenberg, A1
Zonder, JA1
Faber, E1
Lonial, S1
Anderson, KC1
Richardson, PG1
Orlowski, RZ1
Wagner, LI1
Rajkumar, SV1
Hou, G1
Cui, J1
Xie, H1
Sun, Z1
Fang, Z1
Dunstand-Guzmán, E1
Hallal-Calleros, C1
Hernández-Velázquez, VM1
Canales-Vargas, EJ1
Domínguez-Roldan, R1
Pedernera, M1
Peña-Chora, G1
Flores-Pérez, I1
Kim, MJ1
Han, C1
White, K1
Park, HJ1
Ding, D1
Boyd, K1
Rothenberger, C1
Bose, U1
Carmichael, P1
Linser, PJ1
Tanokura, M1
Salvi, R1
Someya, S1
Samuni, A1
Goldstein, S1
Divya, KP1
Dharuman, V1
Feng, J2
Qian, Y1
Cheng, Q1
Ma, H1
Ren, X2
Wei, Q1
Pan, W1
Guo, J1
Situ, B1
An, T1
Zheng, L1
Augusto, S1
Ratola, N1
Tarín-Carrasco, P1
Jiménez-Guerrero, P1
Turco, M1
Schuhmacher, M1
Costa, S1
Teixeira, JP1
Costa, C1
Syed, A1
Marraiki, N1
Al-Rashed, S1
Elgorban, AM1
Yassin, MT1
Chankhanittha, T1
Nanan, S1
Sorokina, KN1
Samoylova, YV1
Gromov, NV1
Ogorodnikova, OL1
Parmon, VN1
Ye, J1
Liao, W1
Zhang, P1
Nabi, M1
Cai, Y1
Alsbou, EM1
Omari, KW1
Adeosun, WA1
Asiri, AM1
Marwani, HM1
Barral, M1
Jemal-Turki, A1
Beuvon, F1
Soyer, P1
Camparo, P1
Cornud, F1
Atwater, BD1
Jones, WS1
Loring, Z1
Friedman, DJ1
Namburath, M1
Papirio, S1
Moscariello, C1
Di Costanzo, N1
Pirozzi, F1
Alappat, BJ1
Sreekrishnan, TR1
Volpin, F1
Woo, YC1
Kim, H1
Freguia, S1
Jeong, N1
Choi, JS1
Phuntsho, S1
Shon, HK1
Domínguez-Zambrano, E1
Pedraza-Chaverri, J1
López-Santos, AL1
Medina-Campos, ON1
Cruz-Rivera, C1
Bueno-Hernández, F1
Espinosa-Cuevas, A1
Bulavaitė, A1
Dalgediene, I1
Michailoviene, V1
Pleckaityte, M1
Sauerbier, P1
Köhler, R1
Renner, G1
Militz, H1
Kiedrowski, M1
Kapala, P1
Kiedrowska, M1
Skoczynska, A1
Czerw, A1
Deptała, A1
Fong, W1
To, KKW1
Ferreira, PMP1
Sousa, RWR1
Ferreira, JRO1
Militão, GCG1
Bezerra, DP1
Cha, YE1
Park, R1
Jang, M1
Park, YI1
Yamamoto, A1
Oh, WK1
Lee, EJ1
Park, J1
Vergoten, G1
Bailly, C1
Kapuy, O1
Makk-Merczel, K1
Szarka, A1
Xu, S1
Zhong, Y1
Nie, C1
Pan, Y1
Adeli, M1
Haag, R1
Guo, T1
Xu, J1
Xiong, Y1
Ke, Y1
Kania, E1
Pająk, B1
O'Prey, J1
Sierra Gonzalez, P1
Litwiniuk, A1
Urbańska, K1
Ryan, KM1
Orzechowski, A1
Zhou, Z1
Yan, Y1
Hu, K1
Ma, R1
Cheng, Y2
Levy, JMM1
Towers, CG1
Su, C1
Zhao, L2
Kondratskyi, A1
Kondratska, K1
Vanden Abeele, F1
Gordienko, D1
Dubois, C1
Toillon, RA1
Slomianny, C1
Lemière, S1
Delcourt, P1
Dewailly, E1
Skryma, R1
Biot, C1
Prevarskaya, N1
Plantone, D1
Koudriavtseva, T1
Halama, A1
Kulinski, M1
Dib, SS1
Zaghlool, SB1
Siveen, KS1
Iskandarani, A1
Zierer, J1
Prabhu, KS1
Satheesh, NJ1
Bhagwat, AM1
Uddin, S1
Kastenmüller, G1
Elemento, O1
Gross, SS1
Suhre, K1
Pelt, J1
Busatto, S1
Ferrari, M1
Thompson, EA1
Mody, K1
Wolfram, J1
Zhan, L1
Wei, B1
Ji, Z1
Kang, R1
Tang, D1
Ghosh, C1
Nandi, A1
Basu, S1
Rajić, KPZ1
Mlinarić, Z1
Uzelac, L1
Kralj, M1
Zorc, B1
Bagamanshina, AV1
Troitskaya, OS1
Nushtaeva, AA1
Yunusova, AY1
Starykovych, MO1
Kuligina, EV1
Kit, YY1
Richter, M1
Wohlfromm, F1
Kähne, T1
Lavrik, IN1
Richter, VA1
Koval, OA1
Farokhi, F1
Grellier, P1
Clément, M1
Roussakis, C1
Loiseau, PM1
Genin-Seward, E1
Kornprobst, JM1
Barnathan, G1
Wielgosz-Collin, G1
Gewirtz, DA1
Jutten, B1
Keulers, TG1
Schaaf, MB1
Savelkouls, K2
Theys, J1
Span, PN1
Vooijs, MA1
Bussink, J2
Rouschop, KM2
Keithley, RB1
Weaver, EM1
Rosado, AM1
Metzinger, MP1
Hummon, AB1
Dovichi, NJ1
Pellegrini, P1
Strambi, A1
Zipoli, C1
Hägg-Olofsson, M1
Buoncervello, M1
Linder, S1
De Milito, A1
Critselis, E1
Voutsas, IF1
Perez, SA1
Moschovi, M1
Baxevanis, CN1
Chrousos, GP1
Maes, H1
Kuchnio, A1
Carmeliet, P1
Agostinis, P1
Liao, Z1
Zhang, LJ1
Xiao, HT1
Pascolo, S1
Ondrej, M1
Cechakova, L1
Durisova, K1
Pejchal, J1
Tichy, A1
Chi, KH1
Huang, YC1
Chiang, HC1
Chi, MS1
Chi, CH1
Wang, HE1
Kao, SJ1
Garufi, A1
Pistritto, G1
Cirone, M1
D'Orazi, G1
Burikhanov, R1
Hebbar, N1
Noothi, SK1
Shukla, N1
Sledziona, J1
Araujo, N1
Kudrimoti, M1
Wang, QJ1
Watt, DS1
Welch, DR1
Maranchie, J1
Harada, A1
Rangnekar, VM1
Massey, AJ1
Cooper, RG1
Magwere, T1
Lipka, D1
Boratyński, J1
Hu, C1
Solomon, VR2
Ulibarri, G1
Degtyarev, M1
De Mazière, A1
Orr, C1
Lee, BB1
Tien, JY1
Prior, WW1
van Dijk, S1
Wu, H1
Gray, DC1
Davis, DP1
Stern, HM1
Murray, LJ1
Hoeflich, KP1
Klumperman, J1
Lin, K1
NELSON, AA1
FITZHUGH, OG1
Pimkina, J1
Murphy, ME1
Zhu, H2
Evans, B1
O'Neill, P1
Hait, WN1
Yang, JM2
van den Beucken, T1
Dubois, L1
Niessen, H1
Keulers, T1
Mujcic, H1
Landuyt, W1
Voncken, JW1
van der Kogel, AJ1
Koritzinsky, M1
Wouters, BG1
Chi, C1
Han, M1
Zhuang, Y1
Xu, T1
Xiong, S1
Yu, B1
Lee, RJ1
Pan, T1
Fan, Z1
Tang, YC1
Williams, BR1
Siegel, JJ1
Amon, A1
Ruschak, AM1
Slassi, M1
Kay, LE1
Schimmer, AD1
Chin, BB1
Hjelemand, A1
Rich, J1
Lascola, C1
Storms, R1
McLendon, R1
Reiman, R1
Greer, KL1
Metzler, SD1
McDougald, D1
Dai, D1
Vaidyanathan, G1
Yang, ZJ1
Chee, CE1
Huang, S1
Sinicrope, FA1
Han, W1
Feng, L1
Wang, K1
Pan, Q1
Jin, W1
Pan, H1
Mancias, JD1
Kimmelman, AC1
Ko, YH1
Lin, Z1
Flomenberg, N1
Pestell, RG1
Howell, A1
Sotgia, F1
Lisanti, MP1
Martinez-Outschoorn, UE1
Harhaji-Trajkovic, L1
Arsikin, K1
Kravic-Stevovic, T1
Petricevic, S1
Tovilovic, G1
Pantovic, A1
Zogovic, N1
Ristic, B1
Janjetovic, K1
Bumbasirevic, V1
Trajkovic, V1
Driscoll, JJ1
Chowdhury, RD1
Liu, B1
Bao, JK1
Townsend, KN1
Hughson, LR1
Schlie, K1
Poon, VI1
Westerback, A1
Lum, JJ1
Hu, YL1
Jahangiri, A1
Delay, M1
Aghi, MK1
Hu, F1
Shao, W1
Liao, Q1
Ma, T1
Geng, L1
Yin, CC1
Qiu, X1
Kimura, T1
Takabatake, Y1
Takahashi, A1
Isaka, Y1
KIMURA, I7
KNOX, JM1
HIRAKI, K5
DAMRON, MH1
CLARK, RB1
CZADO, L1
POWERS, CC1
ROOK, A1
VANBREMEERSCH, F1
RUTMAN, RJ1
STEELE, WJ1
PRICE, CC1
Marx, J1
Kageyama, H1
Kawanishi, K1
Moritani, Y2
Forrester, JA1
McIntosh, DP1
Cumber, AJ1
Parnell, GD1
Ross, WC1
Paulus, HE1
Vingerhoeds, MH1
Storm, G1
Crommelin, DJ1
Kayyali, R1
Marriott, C1
Wiseman, H1
Riffkin, CD1
Chung, R1
Wall, DM1
Zalcberg, JR1
Cowman, AF2
Foley, M1
Tilley, L1
Papadopoulou, MV1
Ji, M1
Rao, MK1
Bloomer, WD1
Silberstein, EB1
Karcz, S1
Ginsburg, H1
Alonso, K1
Bastien, P1
Higgins, C1
Roelofs, RI1
Engel, WK1
Tanneberger, S1
Bacigalupo, G1
Pittman, FE1
Pittman, JC1
Braun, HJ1
Ota, K1
Thomas, PK1
Yamana, M1
Onoshi, T1
Nishizaki, Y1
Nieper, HA1
Stone, OJ1

Clinical Trials (5)

Trial Overview

TrialPhaseEnrollmentStudy TypeStart DateStatus
Proflaxis for Healthcare Professionals Using Hydroxychloroquine Plus Vitamin Combining Vitamins C, D and Zinc During COVID-19 Pandemia: An Observational Study[NCT04326725]80 participants (Anticipated)Observational2020-03-20Active, not recruiting
A Phase II Randomized Controlled Trial for the Addition of Chloroquine, an Autophagy Inhibitor, to Concurrent Chemoradiation for Newly Diagnosed Glioblastoma[NCT02432417]Phase 20 participants (Actual)Interventional2023-11-10Withdrawn (stopped due to The study was withdrawn due to a lack of funding. The researchers were unable to secure the necessary financial support to continue and complete the trial.)
A Phase I Trial for the Addition of Chloroquine, an Autophagy Inhibitor, to Concurrent Chemoradiation for Newly Diagnosed Glioblastoma[NCT02378532]Phase 113 participants (Actual)Interventional2016-08-31Completed
Phase 2 Study of Hydroxychloroquine to Increase Tumor Suppressor PAR-4 Levels in Oligometastatic Prostate Cancer[NCT04011410]Phase 220 participants (Actual)Interventional2019-12-03Active, not recruiting
Identification of Novel Autophagy Markers in Bladder Cancer Patients[NCT03254888]150 participants (Anticipated)Observational2020-12-01Not yet recruiting
[information is prepared from clinicaltrials.gov, extracted Sep-2024]

Reviews

36 reviews available for chloroquine and Neoplasms

ArticleYear
Quinoline and quinolone dimers and their biological activities: An overview.
    European journal of medicinal chemistry, 2019, Jan-01, Volume: 161

    Topics: Anti-Bacterial Agents; Antimalarials; Antineoplastic Agents; Bacteria; Dimerization; Humans; Neoplas

2019
Recent advancements of 4-aminoquinazoline derivatives as kinase inhibitors and their applications in medicinal chemistry.
    European journal of medicinal chemistry, 2019, May-15, Volume: 170

    Topics: Animals; Antineoplastic Agents; Chemistry Techniques, Synthetic; Humans; Neoplasms; Protein Kinase I

2019
Repurposing drugs in autophagy for the treatment of cancer: From bench to bedside.
    Drug discovery today, 2022, Volume: 27, Issue:7

    Topics: Antineoplastic Agents; Autophagy; Chloroquine; Drug Repositioning; Humans; Neoplasms

2022
Autophagy Agents in Clinical Trials for Cancer Therapy: A Brief Review.
    Current oncology (Toronto, Ont.), 2022, 03-05, Volume: 29, Issue:3

    Topics: Autophagy; Chloroquine; Humans; Hydroxychloroquine; Neoplasms; United States

2022
Recent Update and Drug Target in Molecular and Pharmacological Insights into Autophagy Modulation in Cancer Treatment and Future Progress.
    Cells, 2023, 01-31, Volume: 12, Issue:3

    Topics: Antineoplastic Agents; Autophagy; Chloroquine; Humans; Hydroxychloroquine; Neoplasms

2023
Ferrocene-Based Compounds with Antimalaria/Anticancer Activity.
    Molecules (Basel, Switzerland), 2019, Oct-07, Volume: 24, Issue:19

    Topics: Aminoquinolines; Antimalarials; Antineoplastic Agents; Chloroquine; Drug Resistance, Neoplasm; Drug

2019
Dissecting pharmacological effects of chloroquine in cancer treatment: interference with inflammatory signaling pathways.
    Immunology, 2020, Volume: 159, Issue:3

    Topics: Animals; Antineoplastic Agents; Autophagy; Chloroquine; Humans; Inflammation Mediators; Neoplasms; N

2020
Crosstalk between autophagy and apoptosis: Mechanisms and therapeutic implications.
    Progress in molecular biology and translational science, 2020, Volume: 172

    Topics: Animals; Antineoplastic Agents; Apoptosis; Apoptosis Regulatory Proteins; Autophagy; Autophagy-Relat

2020
Psychological distress among health care professionals of the three COVID-19 most affected Regions in Cameroon: Prevalence and associated factors.
    Annales medico-psychologiques, 2021, Volume: 179, Issue:2

    Topics: 3' Untranslated Regions; 5'-Nucleotidase; A549 Cells; Accidental Falls; Acetylcholinesterase; Acryli

2021
Repurposing Chloroquine Analogs as an Adjuvant Cancer Therapy.
    Recent patents on anti-cancer drug discovery, 2021, Volume: 16, Issue:2

    Topics: Animals; Antineoplastic Agents; Apoptosis; Autophagy; Chemotherapy, Adjuvant; Chloroquine; Drug Repo

2021
Chloroquine and hydroxychloroquine in antitumor therapies based on autophagy-related mechanisms.
    Pharmacological research, 2021, Volume: 168

    Topics: Antineoplastic Agents; Autophagy; Chloroquine; Clinical Trials as Topic; Drug Resistance, Neoplasm;

2021
Targeting autophagy in cancer.
    Nature reviews. Cancer, 2017, Volume: 17, Issue:9

    Topics: Animals; Antineoplastic Agents; Autophagy; Biomarkers, Tumor; Chloroquine; Clinical Trials as Topic;

2017
Current and Future Use of Chloroquine and Hydroxychloroquine in Infectious, Immune, Neoplastic, and Neurological Diseases: A Mini-Review.
    Clinical drug investigation, 2018, Volume: 38, Issue:8

    Topics: Anti-Infective Agents; Anti-Inflammatory Agents; Antimalarials; Antineoplastic Agents; Antirheumatic

2018
Chloroquine and nanoparticle drug delivery: A promising combination.
    Pharmacology & therapeutics, 2018, Volume: 191

    Topics: Animals; Antimalarials; Antineoplastic Combined Chemotherapy Protocols; Autophagy; Chloroquine; Drug

2018
Autophagy therapeutics: preclinical basis and initial clinical studies.
    Cancer chemotherapy and pharmacology, 2018, Volume: 82, Issue:6

    Topics: Animals; Antineoplastic Combined Chemotherapy Protocols; Autophagy; Cell Survival; Chloroquine; Clin

2018
The clinical value of using chloroquine or hydroxychloroquine as autophagy inhibitors in the treatment of cancers: A systematic review and meta-analysis.
    Medicine, 2018, Volume: 97, Issue:46

    Topics: Antineoplastic Combined Chemotherapy Protocols; Autophagy; Chloroquine; Clinical Trials as Topic; Da

2018
New use for old drugs? Prospective targets of chloroquines in cancer therapy.
    Current drug targets, 2014, Volume: 15, Issue:9

    Topics: Animals; Antimalarials; Chloroquine; Clinical Trials as Topic; Humans; Neoplasms; Neoplastic Stem Ce

2014
The utility of chloroquine in cancer therapy.
    Current medical research and opinion, 2015, Volume: 31, Issue:5

    Topics: Antimalarials; Antineoplastic Agents; Apoptosis; Autophagy; Chloroquine; Humans; Neoplasms

2015
Time to use a dose of Chloroquine as an adjuvant to anti-cancer chemotherapies.
    European journal of pharmacology, 2016, Jan-15, Volume: 771

    Topics: Animals; Antineoplastic Agents, Phytogenic; Cell Line, Tumor; Chloroquine; Humans; Neoplasms; Neopla

2016
To live or let die: Unclear task of autophagy in the radiosensitization battle.
    Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology, 2016, Volume: 119, Issue:2

    Topics: Ataxia Telangiectasia Mutated Proteins; Autophagy; Cell Hypoxia; Chloroquine; Humans; Membrane Prote

2016
Chloroquine: novel uses & manifestations.
    The Indian journal of medical research, 2008, Volume: 127, Issue:4

    Topics: Antimalarials; Chloroquine; Humans; Malaria; Neoplasms; Virus Diseases

2008
[Metalloproteinases. Structure and function].
    Postepy higieny i medycyny doswiadczalnej (Online), 2008, Jul-03, Volume: 62

    Topics: 4-Aminobenzoic Acid; Animals; Apoptosis; Arthritis; Autoimmune Diseases; Cell Movement; Chloroquine;

2008
Chloroquine and its analogs: a new promise of an old drug for effective and safe cancer therapies.
    European journal of pharmacology, 2009, Dec-25, Volume: 625, Issue:1-3

    Topics: Animals; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Autophagy; Chloroquine; Drug Syn

2009
Novel proteasome inhibitors to overcome bortezomib resistance.
    Journal of the National Cancer Institute, 2011, Jul-06, Volume: 103, Issue:13

    Topics: Allosteric Site; Animals; Antineoplastic Agents; Apoptosis; Boronic Acids; Bortezomib; Cell Line, Tu

2011
The role of autophagy in cancer: therapeutic implications.
    Molecular cancer therapeutics, 2011, Volume: 10, Issue:9

    Topics: Animals; Antineoplastic Agents; Autophagy; Chloroquine; Gene Expression Regulation, Neoplastic; Huma

2011
Molecular crosstalk between the proteasome, aggresomes and autophagy: translational potential and clinical implications.
    Cancer letters, 2012, Dec-28, Volume: 325, Issue:2

    Topics: Adenine; Antineoplastic Agents; Autophagy; Boronic Acids; Bortezomib; Chloroquine; Clinical Trials a

2012
Targeting autophagic pathways for cancer drug discovery.
    Chinese journal of cancer, 2013, Volume: 32, Issue:3

    Topics: Antibiotics, Antineoplastic; Apoptosis Regulatory Proteins; Autophagy; Beclin-1; Chloroquine; Drug D

2013
Autophagy inhibition in cancer therapy: metabolic considerations for antitumor immunity.
    Immunological reviews, 2012, Volume: 249, Issue:1

    Topics: Angiogenesis Inhibitors; Animals; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protoc

2012
Tumor cell autophagy as an adaptive response mediating resistance to treatments such as antiangiogenic therapy.
    Cancer research, 2012, Sep-01, Volume: 72, Issue:17

    Topics: Adaptation, Biological; Angiogenesis Inhibitors; Animals; Antineoplastic Agents; Autophagy; Chloroqu

2012
Chloroquine in cancer therapy: a double-edged sword of autophagy.
    Cancer research, 2013, Jan-01, Volume: 73, Issue:1

    Topics: Animals; Antineoplastic Agents; Autophagy; Chloroquine; Humans; Kidney; Neoplasms

2013
Immunoliposomes in vivo.
    ImmunoMethods, 1994, Volume: 4, Issue:3

    Topics: Amphotericin B; Animals; Antibodies, Monoclonal; Antineoplastic Agents; Biological Availability; Can

1994
Cancer diagnosis. The role of tumor-imaging radiopharmaceuticals.
    The American journal of medicine, 1976, Volume: 60, Issue:2

    Topics: Antibodies, Neoplasm; Bismuth; Bleomycin; Carcinoembryonic Antigen; Cesium Radioisotopes; Chelating

1976
Similarities and differences between the multidrug resistance phenotype of mammalian tumor cells and chloroquine resistance in Plasmodium falciparum.
    Experimental parasitology, 1991, Volume: 73, Issue:2

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 1; Chloroquine; Drug Resistance; Gene

1991
Enhancement of the antimalarial effect of chloroquine on drug-resistant parasite strains--a critical examination of the reversal of multidrug resistance.
    Experimental parasitology, 1991, Volume: 73, Issue:2

    Topics: Animals; Antineoplastic Agents; Chloroquine; Drug Resistance; Gene Amplification; Genes; Humans; Neo

1991
[Clinical picture, diagnostics and therapy of amyloidoses].
    Medizinische Klinik, 1972, Oct-06, Volume: 67, Issue:40

    Topics: Adrenal Gland Diseases; Amyloidosis; Biopsy; Chloroquine; Chronic Disease; Gastrointestinal Diseases

1972
Multiple combination therapy in cancer chemotherapy in Japan.
    Gan, 1969, Volume: 60, Issue:3

    Topics: Antibiotics, Antineoplastic; Antineoplastic Agents; Chloroquine; Cyclophosphamide; Cytarabine; Drug

1969

Trials

1 trial available for chloroquine and Neoplasms

ArticleYear
Psychological distress among health care professionals of the three COVID-19 most affected Regions in Cameroon: Prevalence and associated factors.
    Annales medico-psychologiques, 2021, Volume: 179, Issue:2

    Topics: 3' Untranslated Regions; 5'-Nucleotidase; A549 Cells; Accidental Falls; Acetylcholinesterase; Acryli

2021

Other Studies

82 other studies available for chloroquine and Neoplasms

ArticleYear
Synthesis and evaluation of the antimalarial, anticancer, and caspase 3 activities of tetraoxane dimers.
    Bioorganic & medicinal chemistry, 2013, Dec-01, Volume: 21, Issue:23

    Topics: Antimalarials; Antineoplastic Agents; Caspase 3; Cell Line, Tumor; Dimerization; Humans; Malaria, Fa

2013
Synthesis and bio-evaluation of novel quinolino-stilbene derivatives as potential anticancer agents.
    Bioorganic & medicinal chemistry, 2015, Dec-15, Volume: 23, Issue:24

    Topics: Antineoplastic Agents; Apoptosis; Cell Cycle; Cell Line, Tumor; Drug Screening Assays, Antitumor; Hu

2015
Synthesis and evaluation of anti-plasmodial and cytotoxic activities of epoxyazadiradione derivatives.
    European journal of medicinal chemistry, 2017, Jul-07, Volume: 134

    Topics: Animals; Antimalarials; Antineoplastic Agents; Azadirachta; Cell Line, Tumor; Cell Proliferation; Hu

2017
Discovery of the cancer cell selective dual acting anti-cancer agent (Z)-2-(1H-indol-3-yl)-3-(isoquinolin-5-yl)acrylonitrile (A131).
    European journal of medicinal chemistry, 2018, Aug-05, Volume: 156

    Topics: Acrylonitrile; Animals; Antineoplastic Agents; Cell Line, Tumor; Cell Proliferation; Colonic Neoplas

2018
Discovery of novel ataxia telangiectasia mutated (ATM) kinase modulators: Computational simulation, biological evaluation and cancer combinational chemotherapy study.
    European journal of medicinal chemistry, 2022, Apr-05, Volume: 233

    Topics: Ataxia Telangiectasia; Ataxia Telangiectasia Mutated Proteins; Cell Cycle Proteins; Cell Line, Tumor

2022
Enhanced Cancer Starvation Therapy Enabled by an Autophagy Inhibitors-Encapsulated Biomimetic ZIF-8 Nanodrug: Disrupting and Harnessing Dual Pro-Survival Autophagic Responses.
    ACS applied materials & interfaces, 2022, May-18, Volume: 14, Issue:19

    Topics: Autophagy; Biomimetics; Cell Line, Tumor; Chloroquine; Glucose Oxidase; Nanoparticles; Neoplasms; Ze

2022
Autophagy responsive intra-intercellular delivery nanoparticles for effective deep solid tumor penetration.
    Journal of nanobiotechnology, 2022, Jun-25, Volume: 20, Issue:1

    Topics: Autophagy; Cell Line, Tumor; Chloroquine; Docetaxel; Drug Delivery Systems; Humans; Nanoparticles; N

2022
Lysosomal lipid peroxidation mediates immunogenic cell death.
    The Journal of clinical investigation, 2023, 04-17, Volume: 133, Issue:8

    Topics: Chloroquine; Humans; Hydroxychloroquine; Immunogenic Cell Death; Lipid Peroxidation; Lysosomes; Neop

2023
Hollow Cu
    Nanoscale, 2023, Nov-16, Volume: 15, Issue:44

    Topics: Autophagy; Cell Line, Tumor; Chloroquine; Combined Modality Therapy; Humans; Nanoparticles; Nanostru

2023
Hyaluronan nanogel co-loaded with chloroquine to enhance intracellular cisplatin delivery through lysosomal permeabilization and lysophagy inhibition.
    Carbohydrate polymers, 2024, Jan-01, Volume: 323

    Topics: Antineoplastic Agents; Cell Line, Tumor; Chloroquine; Cisplatin; Humans; Hyaluronic Acid; Lysosomes;

2024
Exosomes as a Surrogate Marker for Autophagy in Peripheral Blood, Correlative Data from Phase I Study of Chloroquine in Combination with Carboplatin/Gemcitabine in Advanced Solid Tumors.
    Asian Pacific journal of cancer prevention : APJCP, 2019, 12-01, Volume: 20, Issue:12

    Topics: Antimalarials; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Autophagy; Biomarkers; Car

2019
A Metal-Organic Framework (MOF) Fenton Nanoagent-Enabled Nanocatalytic Cancer Therapy in Synergy with Autophagy Inhibition.
    Advanced materials (Deerfield Beach, Fla.), 2020, Volume: 32, Issue:12

    Topics: Animals; Apoptosis; Autophagy; Catalysis; Cell Line, Tumor; Chloroquine; Drug Synergism; Female; Hum

2020
Complementary autophagy inhibition and glucose metabolism with rattle-structured polydopamine@mesoporous silica nanoparticles for augmented low-temperature photothermal therapy and
    Theranostics, 2020, Volume: 10, Issue:16

    Topics: Animals; Antineoplastic Combined Chemotherapy Protocols; Autophagy; Cell Line, Tumor; Chloroquine; D

2020
Can chloroquine/hydroxychloroquine prove efficient in cancer cachexia? A hypothesis in the era of COVID-19.
    Medical hypotheses, 2021, Volume: 146

    Topics: Autophagy; Cachexia; Chloroquine; COVID-19 Drug Treatment; Cytokine Release Syndrome; Cytokines; Hum

2021
6-Azauridine Induces Autophagy-Mediated Cell Death via a p53- and AMPK-Dependent Pathway.
    International journal of molecular sciences, 2021, Mar-14, Volume: 22, Issue:6

    Topics: AMP-Activated Protein Kinase Kinases; Antineoplastic Agents; Apoptosis; Autophagic Cell Death; Autop

2021
Binding of hydroxychloroquine and chloroquine dimers to palmitoyl-protein thioesterase 1 (PPT1) and its glycosylated forms: a computational approach.
    Journal of biomolecular structure & dynamics, 2022, Volume: 40, Issue:18

    Topics: Asparagine; Child; Chloroquine; Fatty Acids; Humans; Hydroxychloroquine; Membrane Proteins; Neoplasm

2022
Therapeutic Approach of KRAS Mutant Tumours by the Combination of Pharmacologic Ascorbate and Chloroquine.
    Biomolecules, 2021, 04-28, Volume: 11, Issue:5

    Topics: Antineoplastic Agents; Autophagy; Chloroquine; Models, Theoretical; Neoplasms; Proto-Oncogene Protei

2021
Co-Delivery of Doxorubicin and Chloroquine by Polyglycerol Functionalized MoS2 Nanosheets for Efficient Multidrug-Resistant Cancer Therapy.
    Macromolecular bioscience, 2021, Volume: 21, Issue:11

    Topics: Chloroquine; Disulfides; Doxorubicin; Drug Resistance, Neoplasm; Glycerol; HeLa Cells; Humans; Micro

2021
Micelle nanovehicles for co-delivery of Lepidium meyenii Walp. (maca) polysaccharide and chloroquine to tumor-associated macrophages for synergistic cancer immunotherapy.
    International journal of biological macromolecules, 2021, Oct-31, Volume: 189

    Topics: Animals; Antineoplastic Agents; Cell Line, Tumor; Cell Polarity; Chloroquine; Female; Immunotherapy;

2021
Verapamil treatment induces cytoprotective autophagy by modulating cellular metabolism.
    The FEBS journal, 2017, Volume: 284, Issue:9

    Topics: Antimalarials; Antineoplastic Agents; Autophagosomes; Autophagy; Autophagy-Related Protein 5; Autoph

2017
Autophagy inhibition enabled efficient photothermal therapy at a mild temperature.
    Biomaterials, 2017, Volume: 141

    Topics: Animals; Autophagy; Cell Line, Tumor; Chloroquine; Drug Carriers; HeLa Cells; Humans; Hyperthermia,

2017
mAb MDR1-modified chitosan nanoparticles overcome acquired EGFR-TKI resistance through two potential therapeutic targets modulation of MDR1 and autophagy.
    Journal of nanobiotechnology, 2017, Oct-04, Volume: 15, Issue:1

    Topics: Antibodies, Monoclonal; Antineoplastic Agents; ATP Binding Cassette Transporter, Subfamily B, Member

2017
Ferroquine, the next generation antimalarial drug, has antitumor activity.
    Scientific reports, 2017, Nov-21, Volume: 7, Issue:1

    Topics: Aminoquinolines; Animals; Antimalarials; Antineoplastic Agents; Autophagy; Caspases; Cell Cycle Chec

2017
Accelerated lipid catabolism and autophagy are cancer survival mechanisms under inhibited glutaminolysis.
    Cancer letters, 2018, 08-28, Volume: 430

    Topics: Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Autophagy; Benzophenanthridines; Cell Lin

2018
The release and activity of HMGB1 in ferroptosis.
    Biochemical and biophysical research communications, 2019, 03-05, Volume: 510, Issue:2

    Topics: Animals; Autophagy; Carbolines; Cell Death; Cell Line, Tumor; Chloroquine; Ferritins; Fibroblasts; H

2019
Supramolecular self-assembly of triazine-based small molecules: targeting the endoplasmic reticulum in cancer cells.
    Nanoscale, 2019, Feb-14, Volume: 11, Issue:7

    Topics: Chloroquine; Drug Delivery Systems; Endoplasmic Reticulum; Fluorouracil; HeLa Cells; Humans; Neoplas

2019
Chloroquine Urea Derivatives: Synthesis and Antitumor Activity in Vitro.
    Acta pharmaceutica (Zagreb, Croatia), 2018, Dec-01, Volume: 68, Issue:4

    Topics: Antineoplastic Agents; Cell Line, Tumor; Cell Proliferation; Chloroquine; Drug Design; Drug Screenin

2018
Cytotoxic and Antitumor Activity of Lactaptin in Combination with Autophagy Inducers and Inhibitors.
    BioMed research international, 2019, Volume: 2019

    Topics: Adenine; Animals; Antineoplastic Agents; Apoptosis; Autophagy; Caseins; Cathepsin D; Cell Death; Cel

2019
Antimalarial activity of axidjiferosides, new β-galactosylceramides from the African sponge Axinyssa djiferi.
    Marine drugs, 2013, Apr-17, Volume: 11, Issue:4

    Topics: Animals; Antimalarials; Cell Line, Tumor; Ceramides; Chloroquine; Drug Resistance; Female; Galactosy

2013
Cytoprotective and nonprotective autophagy in cancer therapy.
    Autophagy, 2013, Volume: 9, Issue:9

    Topics: Animals; Autophagy; Cell Line, Tumor; Chloroquine; Cytoprotection; Disease Models, Animal; Humans; N

2013
EGFR overexpressing cells and tumors are dependent on autophagy for growth and survival.
    Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology, 2013, Volume: 108, Issue:3

    Topics: Animals; Autophagy; Cell Line, Tumor; Cell Proliferation; Cell Survival; Chloroquine; ErbB Receptors

2013
EGFR overexpressing cells and tumors are dependent on autophagy for growth and survival.
    Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology, 2013, Volume: 108, Issue:3

    Topics: Animals; Autophagy; Cell Line, Tumor; Cell Proliferation; Cell Survival; Chloroquine; ErbB Receptors

2013
EGFR overexpressing cells and tumors are dependent on autophagy for growth and survival.
    Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology, 2013, Volume: 108, Issue:3

    Topics: Animals; Autophagy; Cell Line, Tumor; Cell Proliferation; Cell Survival; Chloroquine; ErbB Receptors

2013
EGFR overexpressing cells and tumors are dependent on autophagy for growth and survival.
    Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology, 2013, Volume: 108, Issue:3

    Topics: Animals; Autophagy; Cell Line, Tumor; Cell Proliferation; Cell Survival; Chloroquine; ErbB Receptors

2013
Single cell metabolic profiling of tumor mimics.
    Analytical chemistry, 2013, Oct-01, Volume: 85, Issue:19

    Topics: Chloroquine; Flow Cytometry; Glycosphingolipids; Humans; Metabolome; Neoplasms; Principal Component

2013
Acidic extracellular pH neutralizes the autophagy-inhibiting activity of chloroquine: implications for cancer therapies.
    Autophagy, 2014, Volume: 10, Issue:4

    Topics: Acids; Apoptosis; Autophagy; Cell Line, Tumor; Chloroquine; Extracellular Space; Humans; Hydrogen-Io

2014
How to teach an old dog new tricks: autophagy-independent action of chloroquine on the tumor vasculature.
    Autophagy, 2014, Volume: 10, Issue:11

    Topics: Animals; Antimalarials; Autophagy; Chloroquine; Endosomes; Gene Deletion; Humans; Hypoxia; Mice; Neo

2014
Simultaneous activation and inhibition of autophagy sensitizes cancer cells to chemotherapy.
    Oncotarget, 2016, Sep-06, Volume: 7, Issue:36

    Topics: Animals; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Autophagy; Cell Line, Tumor; Cel

2016
Reactivation of mutant p53 by capsaicin, the major constituent of peppers.
    Journal of experimental & clinical cancer research : CR, 2016, 09-06, Volume: 35, Issue:1

    Topics: Animals; Antineoplastic Agents, Phytogenic; Apoptosis; Capsaicin; Capsicum; Cell Line, Tumor; Cell P

2016
Chloroquine-Inducible Par-4 Secretion Is Essential for Tumor Cell Apoptosis and Inhibition of Metastasis.
    Cell reports, 2017, 01-10, Volume: 18, Issue:2

    Topics: Animals; Apoptosis; Cell Line, Tumor; Cell Proliferation; Chloroquine; Humans; Mice; Neoplasm Metast

2017
Modification of tumour cell metabolism modulates sensitivity to Chk1 inhibitor-induced DNA damage.
    Scientific reports, 2017, 01-20, Volume: 7

    Topics: Aminoquinolines; Cell Cycle; Cell Line, Tumor; Cell Proliferation; Checkpoint Kinase 1; Chloroquine;

2017
The efficacy and selectivity of tumor cell killing by Akt inhibitors are substantially increased by chloroquine.
    Bioorganic & medicinal chemistry, 2008, Sep-01, Volume: 16, Issue:17

    Topics: Antineoplastic Combined Chemotherapy Protocols; Benzimidazoles; Cell Line, Tumor; Cell Proliferation

2008
Akt inhibition promotes autophagy and sensitizes PTEN-null tumors to lysosomotropic agents.
    The Journal of cell biology, 2008, Oct-06, Volume: 183, Issue:1

    Topics: Animals; Apoptosis; Autophagy; Autophagy-Related Protein 7; Benzylamines; Cell Cycle; Cell Line, Tum

2008
Chloroquine (SN-7618) pathologic changes observed in rats which for 2 years had been fed various proportions.
    Archives of pathology, 1948, Volume: 45, Issue:4

    Topics: Animals; Chloroquine; Neoplasms; Rats; Thyroid Gland; Thyroid Neoplasms

1948
ARF, autophagy and tumor suppression.
    Autophagy, 2009, Volume: 5, Issue:3

    Topics: ADP-Ribosylation Factor 1; Animals; Antineoplastic Agents; Autophagy; Chloroquine; Gene Silencing; G

2009
A role for p53 in the regulation of extracellular matrix metalloproteinase inducer in human cancer cells.
    Cancer biology & therapy, 2009, Volume: 8, Issue:18

    Topics: Basigin; Blotting, Western; Cell Line, Tumor; Cell Movement; Chloroquine; Down-Regulation; Enzyme-Li

2009
The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5.
    The Journal of clinical investigation, 2010, Volume: 120, Issue:1

    Topics: Activating Transcription Factor 4; Animals; Autophagy; Autophagy-Related Protein 5; Cell Hypoxia; Ce

2010
The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5.
    The Journal of clinical investigation, 2010, Volume: 120, Issue:1

    Topics: Activating Transcription Factor 4; Animals; Autophagy; Autophagy-Related Protein 5; Cell Hypoxia; Ce

2010
The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5.
    The Journal of clinical investigation, 2010, Volume: 120, Issue:1

    Topics: Activating Transcription Factor 4; Animals; Autophagy; Autophagy-Related Protein 5; Cell Hypoxia; Ce

2010
The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5.
    The Journal of clinical investigation, 2010, Volume: 120, Issue:1

    Topics: Activating Transcription Factor 4; Animals; Autophagy; Autophagy-Related Protein 5; Cell Hypoxia; Ce

2010
Disruption of lysosome function promotes tumor growth and metastasis in Drosophila.
    The Journal of biological chemistry, 2010, Jul-09, Volume: 285, Issue:28

    Topics: Animals; Chloroquine; Crosses, Genetic; Drosophila; Genotype; Green Fluorescent Proteins; Humans; Ly

2010
Triggering liposomal drug release with a lysosomotropic agent.
    Journal of pharmaceutical sciences, 2010, Volume: 99, Issue:12

    Topics: Animals; Antibiotics, Antineoplastic; Arylsulfonates; Cell Line, Tumor; Chloroquine; Daunorubicin; F

2010
Roles of autophagy in cetuximab-mediated cancer therapy against EGFR.
    Autophagy, 2010, Volume: 6, Issue:8

    Topics: Antibodies, Monoclonal; Antibodies, Monoclonal, Humanized; Apoptosis; Autophagy; Cell Line, Tumor; C

2010
Identification of aneuploidy-selective antiproliferation compounds.
    Cell, 2011, Feb-18, Volume: 144, Issue:4

    Topics: Aminoimidazole Carboxamide; Aneuploidy; Animals; Antineoplastic Agents; Apoptosis; Benzoquinones; Ce

2011
Synthesis and preliminary evaluation of n.c.a. iodoquine: a novel radiotracer with high uptake in cells with high ALDH1 expression.
    Current radiopharmaceuticals, 2012, Volume: 5, Issue:1

    Topics: Aldehyde Dehydrogenase 1 Family; Animals; Blotting, Western; Brain Neoplasms; Cell Line, Tumor; Chlo

2012
Autophagy inhibition enhances daunorubicin-induced apoptosis in K562 cells.
    PloS one, 2011, Volume: 6, Issue:12

    Topics: Antibiotics, Antineoplastic; Antirheumatic Agents; Apoptosis; Autophagy; Chloroquine; Daunorubicin;

2011
Targeting autophagy addiction in cancer.
    Oncotarget, 2011, Volume: 2, Issue:12

    Topics: Animals; Antineoplastic Agents; Autophagy; Chloroquine; Genes, ras; Humans; Hydroxychloroquine; Mice

2011
Glutamine fuels a vicious cycle of autophagy in the tumor stroma and oxidative mitochondrial metabolism in epithelial cancer cells: implications for preventing chemotherapy resistance.
    Cancer biology & therapy, 2011, Dec-15, Volume: 12, Issue:12

    Topics: Apoptosis; Apoptosis Regulatory Proteins; Autophagy; Caveolin 1; Cell Communication; Cell Line, Tumo

2011
Chloroquine-mediated lysosomal dysfunction enhances the anticancer effect of nutrient deprivation.
    Pharmaceutical research, 2012, Volume: 29, Issue:8

    Topics: Animals; Antimalarials; Caloric Restriction; Cell Death; Cell Line, Tumor; Cell Survival; Chloroquin

2012
Spontaneous production of immunoglobulin M in human epithelial cancer cells.
    PloS one, 2012, Volume: 7, Issue:12

    Topics: Antibodies, Neoplasm; Autoantigens; B-Lymphocytes; Cell Line, Tumor; Chloroquine; Epithelial Cells;

2012
BASIC AND CLINICAL STUDIES ON THE TREATMENT OF MALIGNANT TUMORS WITH A FIBROBLAST-INHIBITING AGENT, CHLOROQUINE.
    Nihon Naika Gakkai zasshi. The Journal of the Japanese Society of Internal Medicine, 1963, Jun-10, Volume: 52

    Topics: Animals; Biomedical Research; Carcinoma, Brown-Pearce; Carcinoma, Ehrlich Tumor; Chloroquine; Fibrob

1963
THE DESTRUCTIVE FORCE OF SUNLIGHT.
    The Journal of the Oklahoma State Medical Association, 1964, Volume: 57

    Topics: 4-Aminobenzoic Acid; Aminobenzoates; Antimalarials; Chloroquine; Dermatology; Humans; Neoplasms; Pho

1964
STUDIES ON THE TREATMENT OF MALIGNANT TUMORS WITH FIBROBLAST-INHIBITING AGENT. II. EFFECTS OF CHLOROQUINE ON ANIMAL TUMORS.
    Acta medicinae Okayama, 1963, Volume: 17

    Topics: Animals; Antineoplastic Agents; Carcinoma, Brown-Pearce; Carcinoma, Ehrlich Tumor; Chloroquine; Fibr

1963
STUDIES ON THE TREATMENT OF MALIGNANT TUMORS WITH FIBROBLAST-INHIBITING AGENT. I. FIBROBLAST-INHIBITING ACTION OF CHLOROQUINE.
    Acta medicinae Okayama, 1963, Volume: 17

    Topics: Antineoplastic Agents; Chick Embryo; Chloroquine; Chondroitin; Connective Tissue; Fibroblasts; Granu

1963
STUDIES ON THE TREATMENT OF MALIGNANT TUMORS WITH FIBROBLAST-INHIBITING AGENT. 3. EFFECTS OF CHLOROQUINE ON HUMAN CANCERS.
    Acta medicinae Okayama, 1964, Volume: 18

    Topics: Chloroquine; Drug Therapy; Fibroblasts; Geriatrics; Lung Neoplasms; Neoplasms; Radiography; Radiogra

1964
STUDIES ON THE TREATMENT OF MALIGNANT TUMORS WITH FIBROBLAST-INHIBITING AGENT. IV. EFFECTS OF CHLOROQUINE ON MALIGNANT LYMPHOMAS.
    Acta medicinae Okayama, 1964, Volume: 18

    Topics: Chloroquine; Fibroblasts; Hodgkin Disease; Humans; Leukemia; Leukemia, Lymphoid; Lymphocytes; Lympho

1964
A PROBLEM IN RESEARCH.
    American journal of proctology, 1965, Volume: 16

    Topics: Antineoplastic Agents; Chloroquine; Electron Transport Complex IV; Mice; Neoplasms; Neoplasms, Exper

1965
SOME CHEMICAL INFLUENCES ON HAIR GROWTH AND PIGMENTATION.
    The British journal of dermatology, 1965, Volume: 77

    Topics: Alopecia; Aminopterin; Anticoagulants; Child; Chloroquine; Colchicine; Cyclophosphamide; Geriatrics;

1965
[CUTANEOUS LYMPHOCYTOMAS].
    La semaine des hopitaux : organe fonde par l'Association d'enseignement medical des hopitaux de Paris, 1965, Jan-08, Volume: 41

    Topics: Chloroquine; Humans; Lymphoma; Methylprednisolone; Neoplasms; Pathology; Pseudolymphoma; Skin Neopla

1965
Experimental chemotherapy studies. II. The reactions of chloroquine mustard (CQM) and nitrogen mustard (HN2) with Ehrlich cells.
    Cancer research, 1961, Volume: 21

    Topics: Chloroquine; Mechlorethamine; Mustard Plant; Neoplasms; Nitrogen Mustard Compounds

1961
Autophagy: is it cancer's friend or foe?
    Science (New York, N.Y.), 2006, May-26, Volume: 312, Issue:5777

    Topics: Animals; Antineoplastic Agents; Apoptosis Regulatory Proteins; Autophagy; Beclin-1; Cell Survival; C

2006
[Studies on the treatment of malignant tumor with fibroblast-inhibiting agents].
    Gan no rinsho. Japan journal of cancer clinics, 1966, Volume: 12, Issue:8

    Topics: Aged; Animals; Antineoplastic Agents; Chloroquine; Female; Fibroblasts; Humans; Male; Mice; Middle A

1966
Delivery of ricin and abrin A-chains to human carcinoma cells in culture following covalent linkage to monoclonal antibody LICR-LOND-Fib 75.
    Cancer drug delivery, 1984,Fall, Volume: 1, Issue:4

    Topics: Abrin; Animals; Antibodies, Monoclonal; Cells, Cultured; Chloroquine; Humans; Neoplasms; Plant Prote

1984
An overview of benefit/risk of disease modifying treatment of rheumatoid arthritis as of today.
    Annals of the rheumatic diseases, 1982, Volume: 41 Suppl 1

    Topics: Arthritis, Rheumatoid; Azathioprine; Chloroquine; Cyclophosphamide; Female; Gold; Humans; Hydroxychl

1982
Tamoxifen decreases drug efflux from liposomes: relevance to its ability to reverse multidrug resistance in cancer cells?
    FEBS letters, 1994, May-16, Volume: 344, Issue:2-3

    Topics: Antineoplastic Agents; Chloroquine; Cholesterol; Drug Resistance; Humans; Kinetics; Liposomes; Membr

1994
Modulation of the function of human MDR1 P-glycoprotein by the antimalarial drug mefloquine.
    Biochemical pharmacology, 1996, Nov-22, Volume: 52, Issue:10

    Topics: Affinity Labels; Antimalarials; ATP Binding Cassette Transporter, Subfamily B, Member 1; Binding Sit

1996
4-[3-(2-Nitro-1-imidazolyl)propylamino]-7-chloroquinoline hydrochloride (NLCQ-1), a novel bioreductive compound as a hypoxia-selective cytotoxin.
    Oncology research, 2000, Volume: 12, Issue:4

    Topics: Aminoquinolines; Animals; Antineoplastic Agents; Cell Survival; Chloroquine; Chromatography, Thin La

2000
IARC monographs on the evaluation of the carcinogenic risk of chemicals to man: some miscellaneous pharmaceutical substances.
    IARC monographs on the evaluation of the carcinogenic risk of chemicals to man, 1977, Volume: 13

    Topics: Acriflavine; Animals; Anthralin; Aurothioglucose; Carcinogens; Chloroquine; Diazepam; Ethanolamines;

1977
Human-human monoclonal antibody directed against tumor surface antigen in the treatment of human malignancy. A pilot study.
    American journal of clinical oncology, 1991, Volume: 14, Issue:6

    Topics: Adolescent; Adult; Aged; Antibodies, Monoclonal; Antibodies, Neoplasm; Antigens, Neoplasm; Chloroqui

1991
Public-health epidemiology in Vanuatu.
    The Medical journal of Australia, 1990, Jan-01, Volume: 152, Issue:1

    Topics: Adolescent; Anemia; Animals; Cardiovascular Diseases; Child; Child, Preschool; Chloroquine; Drug Res

1990
Transport proteins. Export-import family expands.
    Nature, 1989, Aug-03, Volume: 340, Issue:6232

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 1; Chloroquine; Drug Resistance; Huma

1989
Myopathies associated with systemic diseases.
    Postgraduate medicine, 1971, Volume: 50, Issue:3

    Topics: Alcoholism; Anti-Bacterial Agents; Chloroquine; Collagen Diseases; Endocrine System Diseases; Erythe

1971
[On the value of chloroquine in the treatment of malignant tumor diseases].
    Archiv fur Geschwulstforschung, 1967, Volume: 29, Issue:3

    Topics: Adenocarcinoma, Scirrhous; Adult; Aged; Animals; Breast Neoplasms; Bronchial Neoplasms; Carcinoma, E

1967
Amebic liver abscess following metronidazole therapy for amebic colitis.
    The American journal of tropical medicine and hygiene, 1974, Volume: 23, Issue:2

    Topics: Adult; Chloroquine; Dysentery, Amebic; Emetine; Entamoeba histolytica; Follow-Up Studies; Heart Dise

1974
Myopathy.
    British medical journal, 1970, Feb-14, Volume: 1, Issue:5693

    Topics: Alcoholism; Chloroquine; Glucosyltransferases; Glycogen Storage Disease; Humans; Ischemia; Muscular

1970
[Multiple drug therapy of malignant tumor using fibroblast-suppresive agents as the basis].
    Nihon rinsho. Japanese journal of clinical medicine, 1970, Volume: 28, Issue:9

    Topics: Aged; Antineoplastic Agents; Chloroquine; Drug Synergism; Female; Fibroblasts; Humans; Male; Neoplas

1970
[Cytostatic effect of resochin and atebrin (compare same journal 20 (N.F.) 28: 1591 (1969))].
    Die Medizinische Welt, 1970, May-30, Volume: 22

    Topics: Animals; Antineoplastic Agents; Chloroquine; Humans; Neoplasms; Neoplasms, Experimental; Quinacrine

1970
Early cellular inflammation and neoplasia control.
    Texas reports on biology and medicine, 1968,Fall, Volume: 26, Issue:3

    Topics: Arsenic; Carcinogens; Chloroquine; Folliculitis; Infections; Inflammation; Neoplasms; Psoriasis; Ski

1968