Page last updated: 2024-10-24

chloroquine and Melanoma

chloroquine has been researched along with Melanoma in 61 studies

Chloroquine: The prototypical antimalarial agent with a mechanism that is not well understood. It has also been used to treat rheumatoid arthritis, systemic lupus erythematosus, and in the systemic therapy of amebic liver abscesses.
chloroquine : An aminoquinoline that is quinoline which is substituted at position 4 by a [5-(diethylamino)pentan-2-yl]amino group at at position 7 by chlorine. It is used for the treatment of malaria, hepatic amoebiasis, lupus erythematosus, light-sensitive skin eruptions, and rheumatoid arthritis.

Melanoma: A malignant neoplasm derived from cells that are capable of forming melanin, which may occur in the skin of any part of the body, in the eye, or, rarely, in the mucous membranes of the genitalia, anus, oral cavity, or other sites. It occurs mostly in adults and may originate de novo or from a pigmented nevus or malignant lentigo. Melanomas frequently metastasize widely, and the regional lymph nodes, liver, lungs, and brain are likely to be involved. The incidence of malignant skin melanomas is rising rapidly in all parts of the world. (Stedman, 25th ed; from Rook et al., Textbook of Dermatology, 4th ed, p2445)

Research Excerpts

ExcerptRelevanceReference
"Cutaneous melanomas frequently metastasize to the brain, with temozolomide (TMZ) plus radiotherapy (RT) offering little control of these lesions."7.91Trehalose inhibits cell proliferation and amplifies long-term temozolomide- and radiation-induced cytotoxicity in melanoma cells: A role for autophagy and premature senescence. ( Allavena, G; Del Bello, B; Maellaro, E; Miracco, C; Pirtoli, L; Tini, P; Valacchi, G; Volpi, N, 2019)
"It has been confirmed that multidrug resistant (MDR) melanoma cells (M14 ADR2) are more sensitive than their wild-type counterparts (M14 WT) to H2O2 and aldehydes, the products of bovine serum amine oxidase (BSAO)-catalyzed oxidation of spermine."7.80The combined treatment with chloroquine and the enzymatic oxidation products of spermine overcomes multidrug resistance of melanoma M14 ADR2 cells: a new therapeutic approach. ( Agostinelli, E; Arancia, G; Bozzuto, G; Calcabrini, A; Condello, M; Macone, A; Molinari, A; Ohkubo, S; Tempera, G, 2014)
"The aim of the present study was to compare the effect of realgar nanoparticles and arsenic trioxide (ATO) on viability, DNA damage, proliferation, autophagy and apoptosis in the human melanoma cell lines BOWES and A375."7.80Realgar (As4S4) nanoparticles and arsenic trioxide (As2O3) induced autophagy and apoptosis in human melanoma cells in vitro. ( Balaz, P; Bujnakova, Z; Cholujova, D; Duraj, J; Gronesova, P; Hunakova, L; Lee, TC; Pastorek, M; Sedlak, J, 2014)
"Chloroquine, echinomycin, and 17-DMAG each induced cytotoxicity in multiple human melanoma cell lines, in both normoxia and hypoxia."7.79Inhibition of autophagy with chloroquine is effective in melanoma. ( Egger, ME; Huang, JS; McMasters, KM; McNally, LR; Yin, W, 2013)
"Chloroquine (CQ) can induce cell death in a subset of cancer cell lines, and some melanoma cell lines are quite susceptible."7.79PUMA: a puzzle piece in chloroquine's antimelanoma activity. ( Amaravadi, RK, 2013)
" We show that a lysosome-independent activity of chloroquine (CQ) prevents degradation of PUMA protein, promotes apoptosis, and reduces the growth of melanoma xenografts in mice."7.79Chloroquine promotes apoptosis in melanoma cells by inhibiting BH3 domain-mediated PUMA degradation. ( Androphy, EJ; Kaufmann, WK; Lakhter, AJ; Naidu, SR; Sahu, RP; Sun, Y; Travers, JB, 2013)
" We find that leucine deprivation causes the caspase-dependent apoptotic death of melanoma cells because it fails to appropriately activate autophagy."7.77Defective regulation of autophagy upon leucine deprivation reveals a targetable liability of human melanoma cells in vitro and in vivo. ( Kim, D; Sabatini, DM; Sheen, JH; Zoncu, R, 2011)
"Cucurbitacin B (CuB) is reported to have anti-proliferation effects on a variety of tumors including melanoma, and more effective regimens by combination of this agent with others are under investigation."7.77Histone deacetylase inhibitor valproic acid sensitizes B16F10 melanoma cells to cucurbitacin B treatment. ( He, X; Li, J; Ouyang, D; Xu, L; Zha, Q; Zhang, Y, 2011)
"Melanoma is a fatal cancer with a significant feature of resistance to traditional chemotherapeutic drugs and radiotherapy."5.72Novel chloroquine derivative suppresses melanoma cell growth by DNA damage through increasing ROS levels. ( Chen, X; Li, J; Liu, N; Long, J; Peng, C; Tang, L; Yan, B; Zhang, J, 2022)
"Melanoma is one of the most common skin infections, has triggered significant morbidity and mortality across the globe."5.72In silico-prediction of chloroquine as a multi-targeted drug against CDKN2A signaling network associated with cutaneous malignant melanoma. ( Aqeel, M; Awan, L; Bashir, Z; Jan, Z; Kalsoom, S; Muhammad Ali, G; Munir, A; Nadeem, T; Sadia, H; Saeed, A; Ud Din, S, 2022)
"Danusertib is an inhibitor of aurora kinase, and recent studies have shown that danusertib treatment induces autophagy in several types of cancer."5.56Augmentation of danusertib's anticancer activity against melanoma by blockage of autophagy. ( Dang, J; Jiao, YN; Li, W; Li, YF; Ma, CM; Shang, YY; Wang, Y; Xia, L; Yu, N; Yu, YY, 2020)
"Treatment with chloroquine at a dose of 62 mg/kg i."5.29Antimelanoma activity of chloroquine, an antimalarial agent with high affinity for melanin. ( Fujita, K; Hasegawa, K; Inoue, S; Ito, S; Wakamatsu, K, 1993)
"These results suggest that YAP, MEK1/2, and lysosome function are necessary and critical targets for the therapy of GNAQ/11-driven melanoma, and identify trametinib plus hydroxychloroquine as a potential treatment strategy for metastatic uveal melanoma."3.96Chloroquine Sensitizes ( Blumer, KJ; Dale, KJ; Ghazi, PC; Kinsey, CG; McMahon, M; Odelberg, SJ; Onken, MD; Richards, JR; Sanchez, JMS; Scherzer, MT; Shin, D; Truong, A; Yoo, JH, 2020)
"Cutaneous melanomas frequently metastasize to the brain, with temozolomide (TMZ) plus radiotherapy (RT) offering little control of these lesions."3.91Trehalose inhibits cell proliferation and amplifies long-term temozolomide- and radiation-induced cytotoxicity in melanoma cells: A role for autophagy and premature senescence. ( Allavena, G; Del Bello, B; Maellaro, E; Miracco, C; Pirtoli, L; Tini, P; Valacchi, G; Volpi, N, 2019)
" We previously reported that in human melanoma and osteosarcoma cells, autophagy inhibitors, such as 3‑methyladenine and chloroquine increased the sensitivity to apoptosis induced by tumor necrosis factor‑related apoptosis‑inducing ligand (TRAIL)."3.91Autophagy inhibitors regulate TRAIL sensitivity in human malignant cells by targeting the mitochondrial network and calcium dynamics. ( Ochiai, T; Onoe-Takahashi, A; Suzuki-Karasaki, M; Suzuki-Karasaki, Y, 2019)
"It has been confirmed that multidrug resistant (MDR) melanoma cells (M14 ADR2) are more sensitive than their wild-type counterparts (M14 WT) to H2O2 and aldehydes, the products of bovine serum amine oxidase (BSAO)-catalyzed oxidation of spermine."3.80The combined treatment with chloroquine and the enzymatic oxidation products of spermine overcomes multidrug resistance of melanoma M14 ADR2 cells: a new therapeutic approach. ( Agostinelli, E; Arancia, G; Bozzuto, G; Calcabrini, A; Condello, M; Macone, A; Molinari, A; Ohkubo, S; Tempera, G, 2014)
"The aim of the present study was to compare the effect of realgar nanoparticles and arsenic trioxide (ATO) on viability, DNA damage, proliferation, autophagy and apoptosis in the human melanoma cell lines BOWES and A375."3.80Realgar (As4S4) nanoparticles and arsenic trioxide (As2O3) induced autophagy and apoptosis in human melanoma cells in vitro. ( Balaz, P; Bujnakova, Z; Cholujova, D; Duraj, J; Gronesova, P; Hunakova, L; Lee, TC; Pastorek, M; Sedlak, J, 2014)
"Chloroquine, echinomycin, and 17-DMAG each induced cytotoxicity in multiple human melanoma cell lines, in both normoxia and hypoxia."3.79Inhibition of autophagy with chloroquine is effective in melanoma. ( Egger, ME; Huang, JS; McMasters, KM; McNally, LR; Yin, W, 2013)
"Chloroquine (CQ) can induce cell death in a subset of cancer cell lines, and some melanoma cell lines are quite susceptible."3.79PUMA: a puzzle piece in chloroquine's antimelanoma activity. ( Amaravadi, RK, 2013)
" We show that a lysosome-independent activity of chloroquine (CQ) prevents degradation of PUMA protein, promotes apoptosis, and reduces the growth of melanoma xenografts in mice."3.79Chloroquine promotes apoptosis in melanoma cells by inhibiting BH3 domain-mediated PUMA degradation. ( Androphy, EJ; Kaufmann, WK; Lakhter, AJ; Naidu, SR; Sahu, RP; Sun, Y; Travers, JB, 2013)
"Serum-deprived U251 glioma, B16 melanoma and L929 fibrosarcoma cells were treated with chloroquine in vitro."3.78Chloroquine-mediated lysosomal dysfunction enhances the anticancer effect of nutrient deprivation. ( Arsikin, K; Bumbasirevic, V; Harhaji-Trajkovic, L; Janjetovic, K; Kravic-Stevovic, T; Pantovic, A; Petricevic, S; Ristic, B; Tovilovic, G; Trajkovic, V; Zogovic, N, 2012)
" We find that leucine deprivation causes the caspase-dependent apoptotic death of melanoma cells because it fails to appropriately activate autophagy."3.77Defective regulation of autophagy upon leucine deprivation reveals a targetable liability of human melanoma cells in vitro and in vivo. ( Kim, D; Sabatini, DM; Sheen, JH; Zoncu, R, 2011)
"Cucurbitacin B (CuB) is reported to have anti-proliferation effects on a variety of tumors including melanoma, and more effective regimens by combination of this agent with others are under investigation."3.77Histone deacetylase inhibitor valproic acid sensitizes B16F10 melanoma cells to cucurbitacin B treatment. ( He, X; Li, J; Ouyang, D; Xu, L; Zha, Q; Zhang, Y, 2011)
"1) activity of cell-free extracts (TyH) of B16 melanoma cells cultured in the presence of 5 to 10 mM ammonium chloride was considerably higher than that of cells from control cultures."3.66Stimulation of tyrosinase activity of cultured melanoma cells by lysosomotropic agents. ( Oikawa, A; Saeki, H, 1983)
"A marked cutaneous axonal dystrophy has been observed electronmicroscopically for the first time in the skin of three patients: (a) lesion of pityriasis lichenoides chronica in a patient with bronchogenic carcinoma, (b) non involved skin of a patient with malignant melanoma and (c) non involved skin of a patient with gout and retinal damage after prolonged use of chloroquine."3.65[Tumor- and drug-induced cutaneous axonal dystrophy. An electronmicrocopy proof of multiple lamellated bodies]. ( Orfanos, CE; Runne, U, 1975)
" Chloroquine, ergotamine, ethaverine and chronic abuse of non-narcotic analgesic drugs seem to be responsible for the drug-induced cutaneous neuro-phospholipidosis, whereas the same condition was found in two patients with metastatic bronchogenic carcinoma and malignant melanoma."3.65Tumor- and drug-induced cutaneous neuro-phospholipidosis. ( Orfanos, CE; Runne, U, 1975)
" Safety, pharmacokinetics and preliminary efficacy through intratumoural and peritumoural injections of DT01 were evaluated in combination with radiotherapy in a first-in-human phase I trial in patients with unresectable skin metastases from melanoma."2.82First-in-human phase I study of the DNA-repair inhibitor DT01 in combination with radiotherapy in patients with skin metastases from melanoma. ( Asselain, B; Avril, MF; Bey, P; Cosset, JM; Devun, F; Dreno, B; Dutreix, M; Dutriaux, C; Grob, JJ; Joly, P; Jouary, T; Kirova, Y; Le Tourneau, C; Lebbé, C; Marty, ME; Maubec, E; Mortier, L; Saiag, P; Sun, JS; Thomas, L, 2016)
"Melanoma is a fatal cancer with a significant feature of resistance to traditional chemotherapeutic drugs and radiotherapy."1.72Novel chloroquine derivative suppresses melanoma cell growth by DNA damage through increasing ROS levels. ( Chen, X; Li, J; Liu, N; Long, J; Peng, C; Tang, L; Yan, B; Zhang, J, 2022)
"Melanoma is one of the most common skin infections, has triggered significant morbidity and mortality across the globe."1.72In silico-prediction of chloroquine as a multi-targeted drug against CDKN2A signaling network associated with cutaneous malignant melanoma. ( Aqeel, M; Awan, L; Bashir, Z; Jan, Z; Kalsoom, S; Muhammad Ali, G; Munir, A; Nadeem, T; Sadia, H; Saeed, A; Ud Din, S, 2022)
"Danusertib is an inhibitor of aurora kinase, and recent studies have shown that danusertib treatment induces autophagy in several types of cancer."1.56Augmentation of danusertib's anticancer activity against melanoma by blockage of autophagy. ( Dang, J; Jiao, YN; Li, W; Li, YF; Ma, CM; Shang, YY; Wang, Y; Xia, L; Yu, N; Yu, YY, 2020)
"Treatment with chloroquine at a dose of 62 mg/kg i."1.29Antimelanoma activity of chloroquine, an antimalarial agent with high affinity for melanin. ( Fujita, K; Hasegawa, K; Inoue, S; Ito, S; Wakamatsu, K, 1993)
"Chloroquine treatment of intact cells leads to a 4-fold and a 3-fold increase in galactosylation of the Mr = 110,000 protein and glucosylceramide, respectively, suggesting that these two substrates normally reside mostly in the lysosomal or Golgi compartments."1.28Metastasis-associated murine melanoma cell surface galactosyltransferase: characterization of enzyme activity and identification of the major surface substrates. ( Hart, GW; Passaniti, A, 1990)

Research

Studies (61)

TimeframeStudies, this research(%)All Research%
pre-199028 (45.90)18.7374
1990's4 (6.56)18.2507
2000's1 (1.64)29.6817
2010's20 (32.79)24.3611
2020's8 (13.11)2.80

Authors

AuthorsStudies
Li, J9
Long, J1
Zhang, J4
Liu, N1
Yan, B1
Tang, L1
Chen, X2
Peng, C1
Fei, X1
Xie, X2
Qin, R1
Wang, A1
Meng, X1
Sun, F1
Zhao, Y3
Jiang, D1
Chen, H2
Huang, Q1
Ji, X1
Wang, Z2
Jan, Z1
Aqeel, M1
Munir, A1
Saeed, A1
Sadia, H1
Kalsoom, S1
Nadeem, T1
Bashir, Z1
Awan, L1
Ud Din, S1
Muhammad Ali, G1
Shang, YY1
Yu, N2
Xia, L1
Yu, YY1
Ma, CM1
Jiao, YN1
Li, YF1
Wang, Y3
Dang, J1
Li, W3
Sciarretta, F1
Fulci, C1
Palumbo, C1
Rotili, D1
Tentori, L1
Graziani, G1
Caccuri, AM1
Gil, D1
Zarzycka, M1
Ciołczyk-Wierzbicka, D1
Laidler, P1
Nguépy Keubo, FR1
Mboua, PC1
Djifack Tadongfack, T1
Fokouong Tchoffo, E1
Tasson Tatang, C1
Ide Zeuna, J1
Noupoue, EM1
Tsoplifack, CB1
Folefack, GO1
Kettani, M1
Bandelier, P1
Huo, J1
Li, H4
Yu, D1
Arulsamy, N1
AlAbbad, S1
Sardot, T1
Lekashvili, O1
Decato, D1
Lelj, F1
Alexander Ross, JB1
Rosenberg, E1
Nazir, H1
Muthuswamy, N1
Louis, C1
Jose, S1
Prakash, J1
Buan, MEM1
Flox, C1
Chavan, S1
Shi, X1
Kauranen, P1
Kallio, T1
Maia, G1
Tammeveski, K1
Lymperopoulos, N1
Carcadea, E1
Veziroglu, E1
Iranzo, A1
M Kannan, A1
Arunamata, A1
Tacy, TA1
Kache, S1
Mainwaring, RD1
Ma, M1
Maeda, K1
Punn, R1
Noguchi, S1
Hahn, S3
Iwasa, Y3
Ling, J2
Voccio, JP2
Kim, Y3
Song, J3
Bascuñán, J2
Chu, Y1
Tomita, M1
Cazorla, M1
Herrera, E1
Palomeque, E1
Saud, N1
Hoplock, LB1
Lobchuk, MM1
Lemoine, J1
Li, X10
Henson, MA1
Unsihuay, D1
Qiu, J1
Swaroop, S1
Nagornov, KO1
Kozhinov, AN1
Tsybin, YO1
Kuang, S1
Laskin, J1
Zin, NNINM1
Mohamad, MN1
Roslan, K1
Abdul Wafi, S1
Abdul Moin, NI1
Alias, A1
Zakaria, Y1
Abu-Bakar, N1
Naveed, A1
Jilani, K1
Siddique, AB1
Akbar, M1
Riaz, M1
Mushtaq, Z1
Sikandar, M1
Ilyas, S1
Bibi, I1
Asghar, A1
Rasool, G1
Irfan, M1
Li, XY1
Zhao, S1
Fan, XH1
Chen, KP1
Hua, W1
Liu, ZM1
Xue, XD1
Zhou, B1
Zhang, S2
Xing, YL1
Chen, MA1
Sun, Y2
Neradilek, MB1
Wu, XT1
Zhang, D3
Huang, W1
Cui, Y1
Yang, QQ1
Li, HW1
Zhao, XQ1
Hossein Rashidi, B1
Tarafdari, A1
Ghazimirsaeed, ST1
Shahrokh Tehraninezhad, E1
Keikha, F1
Eslami, B1
Ghazimirsaeed, SM1
Jafarabadi, M1
Silvani, Y1
Lovita, AND1
Maharani, A1
Wiyasa, IWA1
Sujuti, H1
Ratnawati, R1
Raras, TYM1
Lemin, AS1
Rahman, MM1
Pangarah, CA1
Kiyu, A1
Zeng, C2
Du, H1
Lin, D1
Jalan, D1
Rubagumya, F1
Hopman, WM1
Vanderpuye, V1
Lopes, G1
Seruga, B1
Booth, CM1
Berry, S1
Hammad, N1
Sajo, EA1
Okunade, KS1
Olorunfemi, G1
Rabiu, KA1
Anorlu, RI1
Xu, C2
Xiang, Y1
Xu, X2
Zhou, L2
Dong, X1
Tang, S1
Gao, XC1
Wei, CH1
Zhang, RG1
Cai, Q1
He, Y1
Tong, F1
Dong, JH1
Wu, G1
Dong, XR1
Tang, X1
Tao, F1
Xiang, W1
Jin, L1
Tao, H1
Lei, Y1
Gan, H1
Huang, Y1
Chen, Y3
Chen, L3
Shan, A1
Zhao, H2
Wu, M2
Ma, Q1
Wang, J4
Zhang, E1
Li, Y5
Xue, F1
Deng, L1
Liu, L2
Yan, Z2
Meng, J1
Chen, G2
Anastassiadou, M1
Bernasconi, G1
Brancato, A1
Carrasco Cabrera, L1
Greco, L1
Jarrah, S1
Kazocina, A1
Leuschner, R1
Magrans, JO1
Miron, I1
Nave, S1
Pedersen, R1
Reich, H1
Rojas, A1
Sacchi, A1
Santos, M1
Theobald, A1
Vagenende, B1
Verani, A1
Du, L1
Liu, X1
Ren, Y1
Li, P1
Jiao, Q1
Meng, P1
Wang, F2
Wang, YS1
Wang, C3
Zhou, X2
Wang, W1
Wang, S2
Hou, J1
Zhang, A1
Lv, B1
Gao, C1
Pang, D1
Lu, K1
Ahmad, NH1
Wang, L1
Zhu, J2
Zhang, L2
Zhuang, T1
Tu, J1
Zhao, Z1
Qu, Y1
Yao, H1
Wang, X5
Lee, DF1
Shen, J3
Wen, L1
Huang, G2
Zhao, Q1
Hu, W1
Zhang, Y5
Wu, X1
Lu, J2
Li, M1
Wu, W1
Du, F1
Ji, H1
Yang, X2
Xu, Z1
Wan, L1
Wen, Q1
Cho, CH1
Zou, C1
Xiao, Z1
Liao, J1
Su, X1
Bi, Z1
Su, Q1
Huang, H1
Wei, Y2
Gao, Y2
Na, KJ1
Choi, H1
Oh, HR1
Kim, YH1
Lee, SB1
Jung, YJ1
Koh, J1
Park, S1
Lee, HJ1
Jeon, YK1
Chung, DH1
Paeng, JC1
Park, IK1
Kang, CH1
Cheon, GJ1
Kang, KW1
Lee, DS1
Kim, YT1
Pajuelo-Lozano, N1
Alcalá, S1
Sainz, B1
Perona, R1
Sanchez-Perez, I1
Logotheti, S1
Marquardt, S1
Gupta, SK1
Richter, C1
Edelhäuser, BAH1
Engelmann, D1
Brenmoehl, J1
Söhnchen, C1
Murr, N1
Alpers, M1
Singh, KP1
Wolkenhauer, O1
Heckl, D1
Spitschak, A1
Pützer, BM1
Liao, Y1
Cheng, J1
Kong, X1
Li, S1
Zhang, M4
Zhang, H1
Yang, T2
Dong, Y1
Xu, Y1
Yuan, Z1
Cao, J1
Zheng, Y1
Luo, Z1
Mei, Z1
Yao, Y1
Liu, Z2
Liang, C1
Yang, H1
Song, Y1
Yu, K1
Zhu, C1
Huang, Z1
Qian, J1
Ge, J1
Hu, J2
Wang, H2
Liu, Y4
Mi, Y1
Kong, H1
Xi, D1
Yan, W1
Luo, X1
Ning, Q1
Chang, X2
Zhang, T2
Wang, Q2
Rathore, MG1
Reddy, K1
Shin, SH1
Ma, WY1
Bode, AM1
Dong, Z1
Mu, W1
Liu, C3
Gao, F1
Qi, Y1
Lu, H1
Zhang, X4
Cai, X1
Ji, RY1
Hou, Y3
Tian, J2
Shi, Y1
Ying, S1
Tan, M1
Feng, G1
Kuang, Y1
Chen, D1
Wu, D3
Zhu, ZQ1
Tang, HX1
Shi, ZE1
Kang, J1
Liu, Q2
Qi, J2
Mu, J1
Cong, Z1
Chen, S2
Fu, D1
Li, Z2
Celestrin, CP1
Rocha, GZ1
Stein, AM1
Guadagnini, D1
Tadelle, RM1
Saad, MJA1
Oliveira, AG1
Bianconi, V1
Bronzo, P1
Banach, M1
Sahebkar, A1
Mannarino, MR1
Pirro, M1
Patsourakos, NG1
Kouvari, M1
Kotidis, A1
Kalantzi, KI1
Tsoumani, ME1
Anastasiadis, F1
Andronikos, P1
Aslanidou, T1
Efraimidis, P1
Georgiopoulos, A1
Gerakiou, K1
Grigoriadou-Skouta, E1
Grigoropoulos, P1
Hatzopoulos, D1
Kartalis, A1
Lyras, A1
Markatos, G1
Mikrogeorgiou, A1
Myroforou, I1
Orkopoulos, A1
Pavlidis, P1
Petras, C1
Riga, M1
Skouloudi, M1
Smyrnioudis, N1
Thomaidis, K1
Tsikouri, GE1
Tsikouris, EI1
Zisimos, K1
Vavoulis, P1
Vitali, MG1
Vitsas, G1
Vogiatzidis, C1
Chantanis, S1
Fousas, S1
Panagiotakos, DB1
Tselepis, AD1
Jungen, C1
Alken, FA1
Eickholt, C1
Scherschel, K1
Kuklik, P1
Klatt, N1
Schwarzl, J1
Moser, J1
Jularic, M1
Akbulak, RO1
Schaeffer, B1
Willems, S1
Meyer, C1
Nowak, JK1
Szczepanik, M1
Trypuć, M1
Pogorzelski, A1
Bobkowski, W1
Grytczuk, M1
Minarowska, A1
Wójciak, R1
Walkowiak, J1
Lu, Y2
Xi, J1
Li, C1
Chen, W2
Hu, X1
Zhang, F1
Wei, H1
Gurzu, S1
Jung, I1
Sugimura, H2
Stefan-van Staden, RI1
Yamada, H1
Natsume, H1
Iwashita, Y1
Szodorai, R1
Szederjesi, J1
Yari, D1
Ehsanbakhsh, Z1
Validad, MH1
Langroudi, FH1
Esfandiari, H1
Prager, A1
Hassanpour, K1
Kurup, SP1
Mets-Halgrimson, R1
Yoon, H1
Zeid, JL1
Mets, MB1
Rahmani, B1
Araujo-Castillo, RV1
Culquichicón, C1
Solis Condor, R1
Efendi, F1
Sebayang, SK1
Astutik, E1
Hadisuyatmana, S1
Has, EMM1
Kuswanto, H1
Foroutan, T1
Ahmadi, F1
Moayer, F1
Khalvati, S1
Zhang, Q2
Lyu, Y1
Huang, J1
Wen, Z1
Hou, H1
Zhao, T1
Gupta, A1
Khosla, N1
Govindasamy, V1
Saini, A1
Annapurna, K1
Dhakate, SR1
Akkaya, Ö1
Chandgude, AL1
Dömling, A1
Harnett, J1
Oakes, K1
Carè, J1
Leach, M1
Brown, D1
Cramer, H1
Pinder, TA1
Steel, A1
Anheyer, D1
Cantu, J1
Valle, J1
Flores, K1
Gonzalez, D1
Valdes, C1
Lopez, J1
Padilla, V1
Alcoutlabi, M1
Parsons, J1
Núñez, K1
Hamed, M1
Fort, D1
Bruce, D1
Thevenot, P1
Cohen, A1
Weber, P1
Menezes, AMB1
Gonçalves, H1
Perez-Padilla, R1
Jarvis, D1
de Oliveira, PD1
Wehrmeister, FC1
Mir, S1
Wong, J1
Ryan, CM1
Bellingham, G1
Singh, M2
Waseem, R1
Eckert, DJ1
Chung, F1
Hegde, H1
Shimpi, N1
Panny, A1
Glurich, I1
Christie, P1
Acharya, A1
English, KL1
Downs, M1
Goetchius, E1
Buxton, R1
Ryder, JW1
Ploutz-Snyder, R1
Guilliams, M1
Scott, JM1
Ploutz-Snyder, LL1
Martens, C1
Goplen, FK1
Aasen, T1
Gjestad, R1
Nordfalk, KF1
Nordahl, SHG1
Inoue, T1
Soshi, S1
Kubota, M1
Marumo, K1
Mortensen, NP1
Caffaro, MM1
Patel, PR2
Uddin, MJ1
Aravamudhan, S1
Sumner, SJ1
Fennell, TR1
Gal, RL1
Cohen, NJ1
Kruger, D1
Beck, RW1
Bergenstal, RM1
Calhoun, P1
Cushman, T1
Haban, A1
Hood, K1
Johnson, ML1
McArthur, T1
Olson, BA1
Weinstock, RS1
Oser, SM1
Oser, TK1
Bugielski, B1
Strayer, H1
Aleppo, G1
Maruyama, H1
Hirayama, K1
Yamashita, M1
Ohgi, K1
Tsujimoto, R1
Takayasu, M1
Shimohata, H1
Kobayashi, M1
Buscagan, TM1
Rees, DC1
Jaborek, JR1
Zerby, HN1
Wick, MP1
Fluharty, FL1
Moeller, SJ1
Razavi, P1
Dickler, MN1
Shah, PD1
Toy, W1
Brown, DN1
Won, HH1
Li, BT1
Shen, R1
Vasan, N1
Modi, S1
Jhaveri, K1
Caravella, BA1
Patil, S1
Selenica, P1
Zamora, S1
Cowan, AM1
Comen, E1
Singh, A1
Covey, A1
Berger, MF1
Hudis, CA1
Norton, L1
Nagy, RJ1
Odegaard, JI1
Lanman, RB1
Solit, DB1
Robson, ME1
Lacouture, ME1
Brogi, E1
Reis-Filho, JS1
Moynahan, ME1
Scaltriti, M1
Chandarlapaty, S1
Papouskova, K1
Moravcova, M1
Masrati, G1
Ben-Tal, N1
Sychrova, H1
Zimmermannova, O1
Fang, J1
Fan, Y1
Luo, T2
Su, H1
Tsetseris, L1
Anthopoulos, TD1
Liu, SF1
Zhao, K1
Sacan, O1
Turkyilmaz, IB1
Bayrak, BB1
Mutlu, O1
Akev, N1
Yanardag, R1
Gruber, S1
Kamnoedboon, P1
Özcan, M1
Srinivasan, M1
Jo, YH1
Oh, HK1
Jeong, SY1
Lee, BG1
Zheng, J1
Guan, H1
Li, D2
Tan, H1
Maji, TK1
J R, A1
Mukherjee, S1
Alexander, R1
Mondal, A1
Das, S1
Sharma, RK1
Chakraborty, NK1
Dasgupta, K1
Sharma, AMR1
Hawaldar, R1
Pandey, M1
Naik, A1
Majumdar, K1
Pal, SK1
Adarsh, KV1
Ray, SK1
Karmakar, D1
Ma, Y2
Gao, W1
Ma, S1
Lin, W1
Zhou, T1
Wu, T1
Wu, Q1
Ye, C1
He, X2
Jiang, F1
Yuan, D1
Chen, Q1
Hong, M1
Chen, K1
Hussain, M1
Razi, SS1
Yildiz, EA1
Zhao, J1
Yaglioglu, HG1
Donato, MD1
Jiang, J1
Jamil, MI1
Zhan, X1
Chen, F1
Cheng, D1
Wu, CT1
Utsunomiya, T1
Ichii, T1
Fujinami, S1
Nakajima, K1
Sanchez, DM1
Raucci, U1
Ferreras, KN1
Martínez, TJ1
Mordi, NA1
Mordi, IR1
Singh, JS1
McCrimmon, RJ1
Struthers, AD1
Lang, CC1
Wang, XW1
Yuan, LJ1
Yang, Y1
Chen, WF1
Luo, R1
Yang, K1
Amarasiri, SS1
Attanayake, AP1
Arawwawala, LDAM1
Jayatilaka, KAPW1
Mudduwa, LKB1
Ogunsuyi, O2
Akanni, O1
Alabi, O1
Alimba, C1
Adaramoye, O1
Cambier, S1
Eswara, S1
Gutleb, AC1
Bakare, A1
Gu, Z1
Cong, J1
Pellegrini, M1
Palmieri, S1
Ricci, A1
Serio, A1
Paparella, A1
Lo Sterzo, C1
Jadeja, SD1
Vaishnav, J1
Mansuri, MS1
Shah, C1
Mayatra, JM1
Shah, A1
Begum, R1
Song, H2
Lian, Y1
Wan, T1
Schultz-Lebahn, A1
Skipper, MT1
Hvas, AM1
Larsen, OH1
Hijazi, Z1
Granger, CB1
Hohnloser, SH1
Westerbergh, J1
Lindbäck, J1
Alexander, JH1
Keltai, M1
Parkhomenko, A1
López-Sendón, JL1
Lopes, RD1
Siegbahn, A1
Wallentin, L1
El-Tarabany, MS1
Saleh, AA1
El-Araby, IE1
El-Magd, MA1
van Ginkel, MPH1
Schijven, MP1
van Grevenstein, WMU1
Schreuder, HWR1
Pereira, EDM1
da Silva, J1
Carvalho, PDS1
Grivicich, I1
Picada, JN1
Salgado Júnior, IB1
Vasques, GJ1
Pereira, MADS1
Reginatto, FH1
Ferraz, ABF1
Vasilenko, EA1
Gorshkova, EN1
Astrakhantseva, IV1
Drutskaya, MS1
Tillib, SV1
Nedospasov, SA1
Mokhonov, VV1
Nam, YW1
Cui, M1
Orfali, R1
Viegas, A1
Nguyen, M1
Mohammed, EHM1
Zoghebi, KA1
Rahighi, S1
Parang, K1
Patterson, KC1
Kahanovitch, U1
Gonçalves, CM1
Hablitz, JJ1
Staruschenko, A1
Mulkey, DK1
Olsen, ML1
Gu, L1
Cao, X1
Mukhtar, A1
Wu, K1
Zhang, YY1
Zhu, Y1
Lu, DZ1
Dong, W1
Bi, WJ1
Feng, XJ1
Wen, LM1
Sun, H1
Qi, MC1
Chang, CC1
Dinh, TK1
Lee, YA1
Wang, FN1
Sung, YC1
Yu, PL1
Chiu, SC1
Shih, YC1
Wu, CY1
Huang, YD1
Lu, TT1
Wan, D1
Sakizadeh, J1
Cline, JP1
Snyder, MA1
Kiely, CJ1
McIntosh, S1
Jiang, X1
Cao, JW1
Zhao, CK1
Yang, R1
Zhang, QY1
Chen, KJ2
Liu, H1
He, Z1
Chen, B1
Wu, J1
Du, X1
Moore, J1
Blank, BR1
Eksterowicz, J1
Sutimantanapi, D1
Yuen, N1
Metzger, T1
Chan, B1
Huang, T1
Duong, F1
Kong, W1
Chang, JH1
Sun, J1
Zavorotinskaya, T1
Ye, Q1
Junttila, MR1
Ndubaku, C1
Friedman, LS1
Fantin, VR1
Sun, D1
Fei, P1
Xie, Q1
Jiang, Y1
Feng, H1
Chang, Y1
Kang, H1
Xing, M1
Chen, J1
Shao, Z1
Yuan, C1
Wu, Y1
Allan, R1
Canham, K1
Wallace, R1
Singh, D1
Ward, J1
Cooper, A1
Newcomb, C1
Nammour, S1
El Mobadder, M1
Maalouf, E1
Namour, M1
Namour, A1
Rey, G1
Matamba, P1
Matys, J1
Zeinoun, T1
Grzech-Leśniak, K1
Segabinazi Peserico, C1
Garozi, L1
Zagatto, AM1
Machado, FA1
Hirth, JM1
Dinehart, EE1
Lin, YL1
Kuo, YF1
Nouri, SS1
Ritchie, C1
Volow, A1
Li, B2
McSpadden, S1
Dearman, K1
Kotwal, A1
Sudore, RL1
Ward, L1
Thakur, A1
Kondadasula, SV1
Ji, K1
Schalk, DL1
Bliemeister, E1
Ung, J1
Aboukameel, A1
Casarez, E1
Sloane, BF1
Lum, LG1
Xiao, M2
Feng, X1
Gao, R1
Du, B1
Brooks, T1
Zwirner, J1
Hammer, N1
Ondruschka, B1
Jermy, M1
Luengo, A1
Marzo, I1
Reback, M1
Daubit, IM1
Fernández-Moreira, V1
Metzler-Nolte, N1
Gimeno, MC1
Tonchev, I1
Heberman, D1
Peretz, A1
Medvedovsky, AT1
Gotsman, I1
Rashi, Y1
Poles, L1
Goland, S1
Perlman, GY1
Danenberg, HD1
Beeri, R1
Shuvy, M1
Fu, Q1
Yang, D1
Sarapulova, A1
Pang, Q1
Meng, Y1
Wei, L1
Ehrenberg, H1
Kim, CC1
Jeong, SH1
Oh, KH1
Nam, KT1
Sun, JY1
Ning, J1
Duan, Z1
Kershaw, SV1
Rogach, AL1
Gao, Z1
Wang, T2
Li, Q1
Cao, T1
Guo, L1
Fu, Y1
Seeger, ZL1
Izgorodina, EI1
Hue, S1
Beldi-Ferchiou, A1
Bendib, I1
Surenaud, M1
Fourati, S1
Frapard, T1
Rivoal, S1
Razazi, K1
Carteaux, G1
Delfau-Larue, MH1
Mekontso-Dessap, A1
Audureau, E1
de Prost, N1
Gao, SS1
Duangthip, D1
Lo, ECM1
Chu, CH1
Roberts, W1
Rosenheck, RA1
Miyake, T1
Kimoto, E1
Luo, L1
Mathialagan, S1
Horlbogen, LM1
Ramanathan, R1
Wood, LS1
Johnson, JG1
Le, VH1
Vourvahis, M1
Rodrigues, AD1
Muto, C1
Furihata, K1
Sugiyama, Y1
Kusuhara, H1
Gong, Q1
Song, W1
Sun, B1
Cao, P1
Gu, S1
Sun, X2
Zhou, G1
Toma, C1
Khandhar, S1
Zalewski, AM1
D'Auria, SJ1
Tu, TM1
Jaber, WA1
Cho, J2
Suwandaratne, NS1
Razek, S1
Choi, YH1
Piper, LFJ1
Watson, DF1
Banerjee, S1
Xie, S1
Lindsay, AP1
Bates, FS1
Lodge, TP1
Hao, Y1
Chapovetsky, A1
Liu, JJ1
Welborn, M1
Luna, JM1
Do, T1
Haiges, R1
Miller Iii, TF1
Marinescu, SC1
Lopez, SA1
Compter, I1
Eekers, DBP1
Hoeben, A1
Rouschop, KMA1
Reymen, B1
Ackermans, L1
Beckervordersantforth, J1
Bauer, NJC1
Anten, MM1
Wesseling, P1
Postma, AA1
De Ruysscher, D1
Lambin, P1
Qiang, L2
Yang, S2
Cui, YH1
He, YY2
Kumar, SK1
Jacobus, SJ1
Cohen, AD1
Weiss, M1
Callander, N1
Singh, AK1
Parker, TL1
Menter, A1
Parsons, B1
Kumar, P1
Kapoor, P1
Rosenberg, A1
Zonder, JA1
Faber, E1
Lonial, S1
Anderson, KC1
Richardson, PG1
Orlowski, RZ1
Wagner, LI1
Rajkumar, SV1
Li, G1
Hou, G1
Cui, J1
Xie, H1
Sun, Z1
Fang, Z1
Dunstand-Guzmán, E1
Hallal-Calleros, C1
Hernández-Velázquez, VM1
Canales-Vargas, EJ1
Domínguez-Roldan, R1
Pedernera, M1
Peña-Chora, G1
Flores-Pérez, I1
Kim, MJ1
Han, C1
White, K1
Park, HJ1
Ding, D1
Boyd, K1
Rothenberger, C1
Bose, U1
Carmichael, P1
Linser, PJ1
Tanokura, M1
Salvi, R1
Someya, S1
Samuni, A1
Goldstein, S1
Divya, KP1
Dharuman, V1
Feng, J2
Qian, Y1
Cheng, Q1
Ma, H1
Ren, X1
Wei, Q1
Pan, W1
Guo, J1
Situ, B1
An, T1
Zheng, L1
Augusto, S1
Ratola, N1
Tarín-Carrasco, P1
Jiménez-Guerrero, P1
Turco, M1
Schuhmacher, M1
Costa, S1
Teixeira, JP1
Costa, C1
Syed, A1
Marraiki, N1
Al-Rashed, S1
Elgorban, AM1
Yassin, MT1
Chankhanittha, T1
Nanan, S1
Sorokina, KN1
Samoylova, YV1
Gromov, NV1
Ogorodnikova, OL1
Parmon, VN1
Ye, J1
Liao, W1
Zhang, P1
Nabi, M1
Cai, Y1
Li, F1
Alsbou, EM1
Omari, KW1
Adeosun, WA1
Asiri, AM1
Marwani, HM1
Barral, M1
Jemal-Turki, A1
Beuvon, F1
Soyer, P1
Camparo, P1
Cornud, F1
Atwater, BD1
Jones, WS1
Loring, Z1
Friedman, DJ1
Namburath, M1
Papirio, S1
Moscariello, C1
Di Costanzo, N1
Pirozzi, F1
Alappat, BJ1
Sreekrishnan, TR1
Volpin, F1
Woo, YC1
Kim, H1
Freguia, S1
Jeong, N1
Choi, JS1
Phuntsho, S1
Shon, HK1
Domínguez-Zambrano, E1
Pedraza-Chaverri, J1
López-Santos, AL1
Medina-Campos, ON1
Cruz-Rivera, C1
Bueno-Hernández, F1
Espinosa-Cuevas, A1
Bulavaitė, A1
Dalgediene, I1
Michailoviene, V1
Pleckaityte, M1
Sauerbier, P1
Köhler, R1
Renner, G1
Militz, H1
Truong, A1
Yoo, JH1
Scherzer, MT1
Sanchez, JMS1
Dale, KJ1
Kinsey, CG1
Richards, JR1
Shin, D1
Ghazi, PC1
Onken, MD1
Blumer, KJ1
Odelberg, SJ1
McMahon, M1
Reyes, RM1
Osta, E1
Kari, S1
Gupta, HB1
Padron, AS1
Kornepati, AVR1
Kancharla, A1
Deng, Y1
Wu, B1
Vadlamudi, R1
Li, R1
Svatek, RS1
Curiel, TJ1
Rebecca, VW1
Nicastri, MC1
McLaughlin, N1
Fennelly, C1
McAfee, Q1
Ronghe, A1
Nofal, M1
Lim, CY1
Witze, E1
Chude, CI1
Zhang, G1
Alicea, GM1
Piao, S1
Murugan, S1
Ojha, R1
Levi, SM1
Wei, Z1
Barber-Rotenberg, JS1
Murphy, ME1
Mills, GB1
Rabinowitz, J1
Marmorstein, R1
Liu, S1
Herlyn, M1
Zoncu, R2
Brady, DC1
Speicher, DW1
Winkler, JD1
Amaravadi, RK2
Hall, EA1
Ramsey, JE1
Peng, Z1
Hayrapetyan, D1
Shkepu, V1
O'Rourke, B1
Geiger, W1
Lam, K1
Verschraegen, CF1
Noman, MZ1
Menard, L1
Chevigne, A1
Szpakowska, M1
Bosseler, M1
Ollert, M1
Berchem, G1
Janji, B1
Allavena, G1
Del Bello, B1
Tini, P1
Volpi, N1
Valacchi, G1
Miracco, C1
Pirtoli, L1
Maellaro, E1
Onoe-Takahashi, A1
Suzuki-Karasaki, M2
Ochiai, T1
Suzuki-Karasaki, Y1
Egger, ME1
Huang, JS1
Yin, W1
McMasters, KM1
McNally, LR1
Maes, H1
Martin, S1
Verfaillie, T1
Agostinis, P1
Goodall, ML1
Martin, KR1
Kortus, MG1
Kauffman, AL1
Trent, JM1
Gately, S1
MacKeigan, JP1
Agostinelli, E1
Condello, M1
Tempera, G1
Macone, A1
Bozzuto, G1
Ohkubo, S1
Calcabrini, A1
Arancia, G1
Molinari, A1
Pastorek, M1
Gronesova, P1
Cholujova, D1
Hunakova, L1
Bujnakova, Z1
Balaz, P1
Duraj, J1
Lee, TC1
Sedlak, J1
Fonteneau, JF1
Brilot, F1
Münz, C1
Gannagé, M1
Le Tourneau, C1
Dreno, B1
Kirova, Y1
Grob, JJ1
Jouary, T1
Dutriaux, C1
Thomas, L1
Lebbé, C1
Mortier, L1
Saiag, P1
Avril, MF1
Maubec, E1
Joly, P1
Bey, P1
Cosset, JM1
Sun, JS1
Asselain, B1
Devun, F1
Marty, ME1
Dutreix, M1
Ryabaya, OO1
Inshakov, AN1
Egorova, AV1
Emelyanova, MA1
Nasedkina, TV1
Zasedatelev, AS1
Khochenkov, DA1
Stepanova, EV1
Sample, A1
Shah, P1
Sheen, JH1
Kim, D1
Sabatini, DM1
Ouyang, D1
Xu, L1
Zha, Q1
Harhaji-Trajkovic, L1
Arsikin, K1
Kravic-Stevovic, T1
Petricevic, S1
Tovilovic, G1
Pantovic, A1
Zogovic, N1
Ristic, B1
Janjetovic, K1
Bumbasirevic, V1
Trajkovic, V1
Lakhter, AJ1
Sahu, RP1
Kaufmann, WK1
Androphy, EJ1
Travers, JB1
Naidu, SR1
Saeki, H1
Oikawa, A1
Johnston, D1
Bystryn, JC1
Biller, H1
Schachtschabel, DO2
Leising, HB1
Pfab, R2
Hess, F1
Inoue, S1
Hasegawa, K1
Ito, S1
Wakamatsu, K1
Fujita, K1
Anderson, DC1
Nichols, E1
Manger, R1
Woodle, D1
Barry, M1
Fritzberg, AR1
Jakobsen, PH1
Staalsø, T1
Bendtzen, K1
Stürchler, D1
Passos de Souza, E1
Evangelista Segundo, PT1
José, FF1
Lemaire, D1
Santiago, M1
Runne, U2
Orfanos, CE2
Safi, N6
Blanquet, P6
Basse-Cathalina, B1
Ducassou, D1
Verin, P3
Passaniti, A1
Hart, GW1
Morrow, M1
Hager, C1
Berger, D1
Djordjevic, B1
van Langevelde, A1
Bakker, CN1
Boer, H1
Ilmer, TA1
Journée-de Korver, JA1
Kaspersen, FM1
Noach, EL1
Oosterhuis, JA1
Pauwels, EK1
Kern, HF1
Lindquist, NG1
Zbytniewski, Z1
Drewa, G1
Vérin, PH1
Schaub, KJ1
Van Woert, MH2
Korb, F2
Kim, SH1
Kim, JH1
Fried, J1
Paparopoli, G1
Sciarrino, E1
Boyd, CM3
Lieberman, LM4
Beierwaltes, WH4
Varma, VM3
Bergstrom, TJ2
Prasad, KN1
Bedoya, V1
Walsh, TJ1
Packer, S1
Le Coulant, P1
Texier, L1
Tamisier, JM1
Moretti, JL1
Gaudin, D1
Yielding, KL1
Stabler, A1
Brown, J1
Counsell, RE1

Reviews

2 reviews available for chloroquine and Melanoma

ArticleYear
Psychological distress among health care professionals of the three COVID-19 most affected Regions in Cameroon: Prevalence and associated factors.
    Annales medico-psychologiques, 2021, Volume: 179, Issue:2

    Topics: 3' Untranslated Regions; 5'-Nucleotidase; A549 Cells; Accidental Falls; Acetylcholinesterase; Acryli

2021
Driving Cytotoxic Natural Killer Cells into Melanoma: If CCL5 Plays the Music, Autophagy Calls the Shots.
    Critical reviews in oncogenesis, 2018, Volume: 23, Issue:5-6

    Topics: Adipogenesis; Animals; Antineoplastic Agents; Autophagy; Autophagy-Related Proteins; Biomarkers; Che

2018

Trials

4 trials available for chloroquine and Melanoma

ArticleYear
Psychological distress among health care professionals of the three COVID-19 most affected Regions in Cameroon: Prevalence and associated factors.
    Annales medico-psychologiques, 2021, Volume: 179, Issue:2

    Topics: 3' Untranslated Regions; 5'-Nucleotidase; A549 Cells; Accidental Falls; Acetylcholinesterase; Acryli

2021
First-in-human phase I study of the DNA-repair inhibitor DT01 in combination with radiotherapy in patients with skin metastases from melanoma.
    British journal of cancer, 2016, May-24, Volume: 114, Issue:11

    Topics: Adult; Aged; Aged, 80 and over; Antineoplastic Agents; Chemoradiotherapy; Chloroquine; Cholesterol;

2016
Diagnostic efficacy of a radioiodinated chloroquine analog in patients with malignant melanoma.
    Journal of nuclear medicine : official publication, Society of Nuclear Medicine, 1970, Volume: 11, Issue:8

    Topics: Brain Neoplasms; Chloroquine; Clinical Trials as Topic; Eye Neoplasms; Humans; Iodine Radioisotopes;

1970
125I-labelled chloroquine analog in the diagnosis of ocular melanomas.
    Journal of nuclear medicine : official publication, Society of Nuclear Medicine, 1971, Volume: 12, Issue:9

    Topics: Autoradiography; Chloroquine; Choroid Neoplasms; Clinical Trials as Topic; Conjunctiva; Eye Neoplasm

1971

Other Studies

56 other studies available for chloroquine and Melanoma

ArticleYear
Novel chloroquine derivative suppresses melanoma cell growth by DNA damage through increasing ROS levels.
    Journal of cellular and molecular medicine, 2022, Volume: 26, Issue:9

    Topics: Apoptosis; Cell Line, Tumor; Cell Proliferation; Chloroquine; DNA Damage; Drug Resistance, Neoplasm;

2022
Proteomics analysis: inhibiting the expression of P62 protein by chloroquine combined with dacarbazine can reduce the malignant progression of uveal melanoma.
    BMC cancer, 2022, Apr-14, Volume: 22, Issue:1

    Topics: Animals; Cell Line, Tumor; Chloroquine; Dacarbazine; Humans; Melanoma; Mice; Mice, Nude; Proteomics;

2022
In silico-prediction of chloroquine as a multi-targeted drug against CDKN2A signaling network associated with cutaneous malignant melanoma.
    Pakistan journal of pharmaceutical sciences, 2022, Volume: 35, Issue:3

    Topics: Chloroquine; Cyclin-Dependent Kinase Inhibitor p16; Humans; Melanoma; Melanoma, Cutaneous Malignant;

2022
Augmentation of danusertib's anticancer activity against melanoma by blockage of autophagy.
    Drug delivery and translational research, 2020, Volume: 10, Issue:1

    Topics: Animals; Autophagy; Benzamides; Cell Cycle; Cell Line, Tumor; Cell Proliferation; Cell Survival; Chl

2020
Effects of Glutathione Transferase-Targeting Nitrobenzoxadiazole Compounds in Relation to PD-L1 Status in Human Melanoma Cells.
    Chemotherapy, 2019, Volume: 64, Issue:3

    Topics: Autophagy; B7-H1 Antigen; Cell Line, Tumor; Chloroquine; Gene Expression Regulation; Glutathione Tra

2019
Integrin linked kinase regulates endosomal recycling of N-cadherin in melanoma cells.
    Cellular signalling, 2020, Volume: 72

    Topics: Cadherins; Cell Line, Tumor; Cell Membrane; Cell Survival; Chloroquine; Endocytosis; Endosomes; Huma

2020
Chloroquine Sensitizes
    Clinical cancer research : an official journal of the American Association for Cancer Research, 2020, 12-01, Volume: 26, Issue:23

    Topics: Animals; Antimalarials; Apoptosis; Cell Proliferation; Chloroquine; Drug Resistance, Neoplasm; Drug

2020
Bladder cancer cell-intrinsic PD-L1 signals promote mTOR and autophagy activation that can be inhibited to improve cytotoxic chemotherapy.
    Cancer medicine, 2021, Volume: 10, Issue:6

    Topics: Animals; Antibiotics, Antineoplastic; Autophagy; B7-H1 Antigen; Cell Line, Tumor; Cell Proliferation

2021
A Unified Approach to Targeting the Lysosome's Degradative and Growth Signaling Roles.
    Cancer discovery, 2017, Volume: 7, Issue:11

    Topics: Animals; Antimalarials; Antineoplastic Agents; Autophagy; Cell Line, Tumor; Cell Proliferation; Chlo

2017
Novel organometallic chloroquine derivative inhibits tumor growth.
    Journal of cellular biochemistry, 2018, Volume: 119, Issue:7

    Topics: Animals; Antimalarials; Apoptosis; Cell Proliferation; Chloroquine; Drug Resistance, Neoplasm; Femal

2018
Trehalose inhibits cell proliferation and amplifies long-term temozolomide- and radiation-induced cytotoxicity in melanoma cells: A role for autophagy and premature senescence.
    Journal of cellular physiology, 2019, Volume: 234, Issue:7

    Topics: Apoptosis; Autophagy; Cell Line, Tumor; Cell Proliferation; Cellular Senescence; Chloroquine; Drug R

2019
Autophagy inhibitors regulate TRAIL sensitivity in human malignant cells by targeting the mitochondrial network and calcium dynamics.
    International journal of oncology, 2019, Volume: 54, Issue:5

    Topics: Autophagy; Biomarkers, Tumor; Bone Neoplasms; Calcium; Cell Line, Tumor; Cell Proliferation; Cell Su

2019
Inhibition of autophagy with chloroquine is effective in melanoma.
    The Journal of surgical research, 2013, Volume: 184, Issue:1

    Topics: Antibiotics, Antineoplastic; Antimalarials; Autophagy; Benzoquinones; Cell Line, Tumor; Chloroquine;

2013
PUMA: a puzzle piece in chloroquine's antimelanoma activity.
    The Journal of investigative dermatology, 2013, Volume: 133, Issue:9

    Topics: Animals; Apoptosis; Apoptosis Regulatory Proteins; Chloroquine; Humans; Melanoma; Proto-Oncogene Pro

2013
Dynamic interplay between autophagic flux and Akt during melanoma progression in vitro.
    Experimental dermatology, 2014, Volume: 23, Issue:2

    Topics: Autophagy; Cell Line, Tumor; Chloroquine; Disease Progression; Humans; In Vitro Techniques; Melanocy

2014
Development of potent autophagy inhibitors that sensitize oncogenic BRAF V600E mutant melanoma tumor cells to vemurafenib.
    Autophagy, 2014, Volume: 10, Issue:6

    Topics: Acridines; Animals; Antimalarials; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Proto

2014
The combined treatment with chloroquine and the enzymatic oxidation products of spermine overcomes multidrug resistance of melanoma M14 ADR2 cells: a new therapeutic approach.
    International journal of oncology, 2014, Volume: 45, Issue:3

    Topics: Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Cell Cycle; Cells, Cultured; Chloroquine;

2014
Realgar (As4S4) nanoparticles and arsenic trioxide (As2O3) induced autophagy and apoptosis in human melanoma cells in vitro.
    Neoplasma, 2014, Volume: 61, Issue:6

    Topics: Amino Acid Chloromethyl Ketones; Antineoplastic Agents; Apoptosis; Arsenic Trioxide; Arsenicals; Aut

2014
The Tumor Antigen NY-ESO-1 Mediates Direct Recognition of Melanoma Cells by CD4+ T Cells after Intercellular Antigen Transfer.
    Journal of immunology (Baltimore, Md. : 1950), 2016, Jan-01, Volume: 196, Issue:1

    Topics: Acetylcysteine; Antigen Presentation; Antigens, Neoplasm; Autophagy; Autophagy-Related Protein 12; C

2016
Autophagy inhibitors chloroquine and LY294002 enhance temozolomide cytotoxicity on cutaneous melanoma cell lines in vitro.
    Anti-cancer drugs, 2017, Volume: 28, Issue:3

    Topics: Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Autophagy; Cell Line, Tumor; Cell Prolife

2017
NF-κB Signaling Activation Induced by Chloroquine Requires Autophagosome, p62 Protein, and c-Jun N-terminal Kinase (JNK) Signaling and Promotes Tumor Cell Resistance.
    The Journal of biological chemistry, 2017, 02-24, Volume: 292, Issue:8

    Topics: Animals; Antimalarials; Antineoplastic Agents; Autophagosomes; Autophagy; Carcinoma, Squamous Cell;

2017
Defective regulation of autophagy upon leucine deprivation reveals a targetable liability of human melanoma cells in vitro and in vivo.
    Cancer cell, 2011, May-17, Volume: 19, Issue:5

    Topics: Animals; Antineoplastic Agents; Autophagy; Caspase 3; Cell Line, Tumor; Chloroquine; Humans; Leucine

2011
Histone deacetylase inhibitor valproic acid sensitizes B16F10 melanoma cells to cucurbitacin B treatment.
    Acta biochimica et biophysica Sinica, 2011, Volume: 43, Issue:6

    Topics: Animals; Apoptosis; Autophagy; Cell Line, Tumor; Chloroquine; Drug Synergism; Histone Deacetylase In

2011
Chloroquine-mediated lysosomal dysfunction enhances the anticancer effect of nutrient deprivation.
    Pharmaceutical research, 2012, Volume: 29, Issue:8

    Topics: Animals; Antimalarials; Caloric Restriction; Cell Death; Cell Line, Tumor; Cell Survival; Chloroquin

2012
Chloroquine promotes apoptosis in melanoma cells by inhibiting BH3 domain-mediated PUMA degradation.
    The Journal of investigative dermatology, 2013, Volume: 133, Issue:9

    Topics: Animals; Antimalarials; Antineoplastic Agents; Apoptosis; Apoptosis Regulatory Proteins; Chloroquine

2013
Stimulation of tyrosinase activity of cultured melanoma cells by lysosomotropic agents.
    Journal of cellular physiology, 1983, Volume: 116, Issue:1

    Topics: Ammonium Chloride; Animals; Catechol Oxidase; Cell Line; Chloroquine; Cycloheximide; Ethylamines; Hy

1983
Mechanism of autodegradation of cell-surface macromolecules shed by human melanoma cells.
    Experimental cell research, 1984, Volume: 152, Issue:1

    Topics: Ammonium Chloride; Biological Transport; Cadaverine; Cell Line; Chloroquine; Coated Pits, Cell-Membr

1984
[Influence of x-rays and quinacrine (atebrine) or chloroquine (resochine)--alone or in combination--on growth and melanin formation of Harding-Passey melanoma cells in monolayer culture].
    Strahlentherapie, 1982, Volume: 158, Issue:7

    Topics: Cell Survival; Cells, Cultured; Chloroquine; Dose-Response Relationship, Radiation; Melanins; Melano

1982
Antimelanoma activity of chloroquine, an antimalarial agent with high affinity for melanin.
    Pigment cell research, 1993, Volume: 6, Issue:5

    Topics: Animals; Antimalarials; Antineoplastic Agents; Chloroquine; Chromatography, High Pressure Liquid; Do

1993
Tumor cell retention of antibody Fab fragments is enhanced by an attached HIV TAT protein-derived peptide.
    Biochemical and biophysical research communications, 1993, Jul-30, Volume: 194, Issue:2

    Topics: Amino Acid Sequence; Biological Transport; Carbon Radioisotopes; Cell Membrane; Chloroquine; Colonic

1993
The antimalarial drug, Ro 42-1611 (arteflene), does not affect cytoadherence and cytokine-inducing properties of Plasmodium falciparum malaria parasites.
    Tropical medicine and parasitology : official organ of Deutsche Tropenmedizinische Gesellschaft and of Deutsche Gesellschaft fur Technische Zusammenarbeit (GTZ), 1995, Volume: 46, Issue:2

    Topics: Adult; Animals; Antigens, Protozoan; Antimalarials; Artemisinins; Bridged Bicyclo Compounds, Heteroc

1995
Rheumatoid arthritis induced by alpha-interferon therapy.
    Clinical rheumatology, 2001, Volume: 20, Issue:4

    Topics: Adult; Anti-Inflammatory Agents, Non-Steroidal; Arthritis, Rheumatoid; Chloroquine; Drug Therapy, Co

2001
[Tumor- and drug-induced cutaneous axonal dystrophy. An electronmicrocopy proof of multiple lamellated bodies].
    Archives for dermatological research = Archiv fur dermatologische Forschung, 1975, Nov-14, Volume: 254, Issue:1

    Topics: Adult; Aged; Axons; Bronchial Neoplasms; Chloroquine; Cytoplasm; Drug Hypersensitivity; Female; Gout

1975
Tumor- and drug-induced cutaneous neuro-phospholipidosis.
    Journal of cutaneous pathology, 1975, Volume: 2, Issue:5

    Topics: Adult; Aged; Analgesics; Axons; Carcinoma, Bronchogenic; Chloroquine; Ergotamine; Female; Humans; Li

1975
Radionuclidic explorations in ophthalmology.
    International journal of nuclear medicine and biology, 1975, Volume: 2, Issue:4

    Topics: Chloroquine; Diabetic Retinopathy; Eye Neoplasms; Fluoresceins; Glaucoma; Hemangioma; Humans; Iodine

1975
Metastasis-associated murine melanoma cell surface galactosyltransferase: characterization of enzyme activity and identification of the major surface substrates.
    Cancer research, 1990, Nov-15, Volume: 50, Issue:22

    Topics: Animals; Antigens, CD; Cell Membrane; Chloroquine; Chromatography, Thin Layer; G(M1) Ganglioside; Ga

1990
Chloroquine as a hyperthermia potentiator.
    The Journal of surgical research, 1989, Volume: 46, Issue:6

    Topics: Cell Survival; Chloroquine; Hyperthermia, Induced; Melanoma; Temperature; Time Factors; Tumor Cells,

1989
Potential radiopharmaceuticals for the detection of ocular melanoma. Part II. Iodoquinoline derivatives and 67Ga-citrate.
    European journal of nuclear medicine, 1986, Volume: 12, Issue:2

    Topics: Aminoquinolines; Animals; Chloroquine; Cricetinae; Eye Neoplasms; Gallium Radioisotopes; Humans; Iod

1986
[Ultrastructural studies of the effect of x-rays and quinacrine (Atebrin) or chloroquine (Resochin)--alone or in combination--on Harding-Passey melanoma cells in monolayer culture].
    Strahlentherapie, 1985, Volume: 161, Issue:11

    Topics: Animals; Chloroquine; Combined Modality Therapy; In Vitro Techniques; Melanoma; Mice; Microscopy, El

1985
Accumulation of drugs on melanin.
    Acta radiologica: diagnosis, 1973, Volume: 325

    Topics: Animals; Autoradiography; Carbon Isotopes; Catechol Oxidase; Catecholamines; Cattle; Chloroquine; Ch

1973
Inhibiting effect of chloroquine diphosphate on the growth of tumors and activity of some acid hydrolases of a melanotic melanoma in golden hamsters (Mesocricetus auratus, Waterhouse).
    Archivum immunologiae et therapiae experimentalis, 1973, Volume: 21, Issue:6

    Topics: Acid Phosphatase; Animals; Catechol Oxidase; Catechols; Cathepsins; Chloroquine; Cricetinae; Liver;

1973
[Ocular radio isotope scanning. Instrumentation. Vectors. Medothology].
    Archives d'ophtalmologie et revue generale d'ophtalmologie, 1974, Volume: 34, Issue:5

    Topics: Chloroquine; Choroiditis; Eye Neoplasms; Fluoresceins; Hemangioma; Humans; Iodine Radioisotopes; Mel

1974
[Ocular scintigraphy].
    La Nouvelle presse medicale, 1974, Oct-12, Volume: 3, Issue:34

    Topics: Chloroquine; Choroiditis; Diagnosis, Differential; Eye; Eye Diseases; Eye Neoplasms; Fluoresceins; H

1974
[Resoquine in the therapy of malignant tumors].
    Die Medizinische Welt, 1972, Jan-22, Volume: 23, Issue:4

    Topics: Aged; Chloroquine; Cyclophosphamide; Drug Synergism; Female; Humans; Leg; Lymphatic Metastasis; Lymp

1972
Effect of x-irradiation on melanosomal tyrosinase activity.
    Radiation research, 1973, Volume: 53, Issue:3

    Topics: Animals; Catechol Oxidase; Chloroquine; Melanocytes; Melanoma; Mice; Neoplasm Transplantation; Neopl

1973
Enhancement of the radiation response of cultured tumor cells by chloroquine.
    Cancer, 1973, Volume: 32, Issue:3

    Topics: Carbon Isotopes; Cell Line; Chloroquine; Female; HeLa Cells; Humans; Lung; Melanoma; Neoplasms, Expe

1973
[Use of labelled molecules in the diagnosis and surveillance of melanomas].
    Biomedicine / [publiee pour l'A.A.I.C.I.G.], 1973, Mar-20, Volume: 19, Issue:3

    Topics: Chloroquine; Eye Neoplasms; Fluoresceins; Fundus Oculi; Humans; Iodine Radioisotopes; Melanoma; Meth

1973
[Conjunction of isotopic vectors in the scintigraphic diagnosis of eye tumors].
    Bulletin des societes d'ophtalmologie de France, 1973, Volume: 73, Issue:3

    Topics: Chloroquine; Eye Neoplasms; Fluoresceins; Humans; Iodine Radioisotopes; Melanoma; Methods; Neoplasm

1973
[Recent diagnostic and therapeutic acquisitions in malignant melanoma].
    Il Cancro, 1974, Volume: 27, Issue:1

    Topics: Antineoplastic Agents; Camptothecin; Chloroquine; Colchicine; Humans; Hydroxyurea; Imidazoles; Immun

1974
Regulation of tyrosinase activity in mouse melanoma and skin by changes in melanosomal membrane permeability.
    The Journal of investigative dermatology, 1971, Volume: 56, Issue:5

    Topics: Animals; Bile Acids and Salts; Catechol Oxidase; Cell Membrane Permeability; Chloroquine; Chlorproma

1971
Effect of chloroquine on malignant lymphoreticular and pigmented cells in vitro.
    Cancer research, 1970, Volume: 30, Issue:5

    Topics: Animals; Burkitt Lymphoma; Cell Nucleolus; Cell Nucleus; Chloroquine; Culture Techniques; Cytoplasm;

1970
Radioisotope detection of ocular melanomas.
    The New England journal of medicine, 1971, Feb-11, Volume: 284, Issue:6

    Topics: Adult; Aged; Child; Chloroquine; Choroid Neoplasms; Diagnosis, Differential; Eye Diseases; Female; H

1971
Treatment doses of 131-I-labeled chloroquine analog in normal and malignant melanoma dogs.
    Journal of nuclear medicine : official publication, Society of Nuclear Medicine, 1971, Volume: 12, Issue:4

    Topics: Animals; Chloroquine; Choroid; Dog Diseases; Dogs; Electroretinography; Eye Neoplasms; Iodine Isotop

1971
[Use of a new iodated vector (labelled iodoquine) in the diagnosis of nevocarcinoma].
    Bordeaux medical, 1971, Volume: 4, Issue:3

    Topics: Adult; Aged; Chloroquine; Female; Humans; Iodine Radioisotopes; Melanoma; Methods; Middle Aged; Neop

1971
The effect of DNA repair inhibitors on e response of tumors treated with x-ray and alkylating agents.
    Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.), 1971, Volume: 137, Issue:1

    Topics: Alkylating Agents; Animals; Bone Marrow; Caffeine; Chloroquine; Cricetinae; Cyclophosphamide; DNA; L

1971
Visualizing human malignant melanoma and metastases. Use of chloroquine analog tagged with iodine 125.
    JAMA, 1968, Sep-30, Volume: 206, Issue:1

    Topics: Adult; Aged; Chloroquine; Feces; Female; Humans; Iodine Radioisotopes; Lymphatic Metastasis; Male; M

1968