Page last updated: 2024-10-24

chloroquine and Liver Neoplasms

chloroquine has been researched along with Liver Neoplasms in 63 studies

Chloroquine: The prototypical antimalarial agent with a mechanism that is not well understood. It has also been used to treat rheumatoid arthritis, systemic lupus erythematosus, and in the systemic therapy of amebic liver abscesses.
chloroquine : An aminoquinoline that is quinoline which is substituted at position 4 by a [5-(diethylamino)pentan-2-yl]amino group at at position 7 by chlorine. It is used for the treatment of malaria, hepatic amoebiasis, lupus erythematosus, light-sensitive skin eruptions, and rheumatoid arthritis.

Liver Neoplasms: Tumors or cancer of the LIVER.

Research Excerpts

ExcerptRelevanceReference
" This study aimed to evaluate chloroquine's (CQ) ability to trigger TRAIL/TRAILR2 apoptotic pathway in thioacetamide (TAA)-induced hepatocellular carcinoma (HCC) either alone or in combination with doxorubicin (DOX)."7.88Chloroquine upregulates TRAIL/TRAILR2 expression and potentiates doxorubicin anti-tumor activity in thioacetamide-induced hepatocellular carcinoma model. ( Eissa, LA; El Gayar, AM; El-Karef, A; El-Mesery, M; Helmy, SA, 2018)
"To investigate the effect of chloroquine in inducing apoptosis of human hepatocellular carcinoma cells and explore the possible mechanism."7.88[Chloroquine induces apoptosis of human hepatocellular carcinoma cells in vitro by miR-26b-mediated regulation of Mcl-1]. ( Jiang, CC; Liu, H; Ma, LY; Sun, XJ; Wang, Y; Zhang, MX; Zhang, P, 2018)
" Here, we explored the impact of salvianolic acid B (Sal B), the major water-soluble compounds of Danshen, on apoptosis and autophagy of human hepatocellular carcinoma cells (HCC)."7.83AKT/mTOR signaling pathway is involved in salvianolic acid B-induced autophagy and apoptosis in hepatocellular carcinoma cells. ( Chen, G; Chen, P; Di, C; Gong, L; Shi, J; Wang, J; Xia, X; Xu, H; Zhang, W, 2016)
"Luteolin induced apoptosis in human liver cancer SMMC-7721 cells, partially via autophagy."5.46Luteolin Promotes Cell Apoptosis by Inducing Autophagy in Hepatocellular Carcinoma. ( Cai, X; Cao, Z; Chai, D; Chen, H; Chu, F; Fang, W; Wen, Y; Zhang, H; Zhang, Y, 2017)
"Sorafenib treatment led to accumulation of autophagosomes as evidenced by conversion from LC3-I to LC3-II observed by immunoblot in Huh7, HLF and PLC/PRF/5 cells."5.38Inhibition of autophagy potentiates the antitumor effect of the multikinase inhibitor sorafenib in hepatocellular carcinoma. ( Fujita, N; Hayashi, N; Hikita, H; Hiramatsu, N; Hosui, A; Ishida, H; Kanto, T; Kodama, T; Miyagi, T; Shimizu, S; Takehara, T; Tatsumi, T; Tsunematsu, H; Yoshimori, T, 2012)
" MATERIAL AND METHODS SMMC-7721 cells (a hepatocellular carcinoma cell line) were treated with different concentrations of oleanolic acid (OA) plus autophagy inhibitor 3-methyladenine (3-MA) (3-MA+OA) or chloroquine (CQ) plus OA (CQ+OA)."3.96Effect of Oleanolic Acid on Apoptosis and Autophagy of SMMC-7721 Hepatoma Cells. ( Wu, X; Zeng, X; Zhou, W, 2020)
" This study aimed to evaluate chloroquine's (CQ) ability to trigger TRAIL/TRAILR2 apoptotic pathway in thioacetamide (TAA)-induced hepatocellular carcinoma (HCC) either alone or in combination with doxorubicin (DOX)."3.88Chloroquine upregulates TRAIL/TRAILR2 expression and potentiates doxorubicin anti-tumor activity in thioacetamide-induced hepatocellular carcinoma model. ( Eissa, LA; El Gayar, AM; El-Karef, A; El-Mesery, M; Helmy, SA, 2018)
"To investigate the effect of chloroquine in inducing apoptosis of human hepatocellular carcinoma cells and explore the possible mechanism."3.88[Chloroquine induces apoptosis of human hepatocellular carcinoma cells in vitro by miR-26b-mediated regulation of Mcl-1]. ( Jiang, CC; Liu, H; Ma, LY; Sun, XJ; Wang, Y; Zhang, MX; Zhang, P, 2018)
" Here, we explored the impact of salvianolic acid B (Sal B), the major water-soluble compounds of Danshen, on apoptosis and autophagy of human hepatocellular carcinoma cells (HCC)."3.83AKT/mTOR signaling pathway is involved in salvianolic acid B-induced autophagy and apoptosis in hepatocellular carcinoma cells. ( Chen, G; Chen, P; Di, C; Gong, L; Shi, J; Wang, J; Xia, X; Xu, H; Zhang, W, 2016)
"Nonalcoholic fatty liver disease (NAFLD) is characterized by excessive deposition of droplets in hepatocytes."1.51Immunohistochemical expression of autophagosome markers LC3 and p62 in preneoplastic liver foci in high fat diet-fed rats. ( Eguchi, A; Ichikawa, R; Masuda, S; Mizukami, S; Nakamura, K; Nakamura, M; Okada, R; Shibutani, M; Tanaka, T; Yoshida, T, 2019)
"The growth inhibition and autophagy of liver cancer cells were detected using acridine orange fluorescence staining, flow cytometry and transmission electron microscopy."1.48The biological role of autophagy in regulating and controlling the proliferation of liver cancer cells induced by bufalin. ( Li, Q; Qin, J; Sheng, X; Zhu, P, 2018)
"Luteolin induced apoptosis in human liver cancer SMMC-7721 cells, partially via autophagy."1.46Luteolin Promotes Cell Apoptosis by Inducing Autophagy in Hepatocellular Carcinoma. ( Cai, X; Cao, Z; Chai, D; Chen, H; Chu, F; Fang, W; Wen, Y; Zhang, H; Zhang, Y, 2017)
"Liver cancer is the second-most frequent cause of cancer death in the world and is highly treatment resistant."1.42Synergistic inhibition of autophagy and neddylation pathways as a novel therapeutic approach for targeting liver cancer. ( Chen, P; Chu, Y; Dong, Z; Hoffman, RM; Hu, T; Jeong, LS; Jia, L; Jiang, Y; Li, C; Li, P; Liang, Y; Pan, Y; Qi, H; Wei, D; Yang, M; Zhang, P, 2015)
"Invasion of hepatocellular carcinoma (HCC) cells is a leading cause of intrahepatic dissemination and metastasis."1.39Autophagy promotes hepatocellular carcinoma cell invasion through activation of epithelial-mesenchymal transition. ( Guo, Y; Li, J; Shang, D; Song, Z; Wu, Y; Xiong, J; Yang, B; Zheng, Q; Zhou, Q, 2013)
"Sorafenib treatment led to accumulation of autophagosomes as evidenced by conversion from LC3-I to LC3-II observed by immunoblot in Huh7, HLF and PLC/PRF/5 cells."1.38Inhibition of autophagy potentiates the antitumor effect of the multikinase inhibitor sorafenib in hepatocellular carcinoma. ( Fujita, N; Hayashi, N; Hikita, H; Hiramatsu, N; Hosui, A; Ishida, H; Kanto, T; Kodama, T; Miyagi, T; Shimizu, S; Takehara, T; Tatsumi, T; Tsunematsu, H; Yoshimori, T, 2012)
"This phenomenon is specific for hepatoma cell lines or primarily cultured hepatocytes."1.32pH-dependent translocation of alpha-tocopherol transfer protein (alpha-TTP) between hepatic cytosol and late endosomes. ( Arai, H; Arita, M; Horiguchi, M; Inoue, K; Kaempf-Rotzoll, DE; Tsujimoto, M, 2003)
"Human hepatoma cells took up Hb-Hp in a receptor-mediated manner."1.28Expression of haptoglobin receptors in human hepatoma cells. ( Okuda, M; Taketani, S; Tokunaga, R, 1992)
"The Fu5AH rat hepatoma cell line accumulates cholesteryl ester (CE) upon incubation in medium supplemented with hyperlipemic serum or hyperlipemic serum lipoproteins."1.26Origin of fatty acids of cholesteryl ester accumulated by Fu5AH cells in culture. ( Rosen, JM; Rothblat, GH, 1977)

Research

Studies (63)

TimeframeStudies, this research(%)All Research%
pre-199017 (26.98)18.7374
1990's9 (14.29)18.2507
2000's2 (3.17)29.6817
2010's26 (41.27)24.3611
2020's9 (14.29)2.80

Authors

AuthorsStudies
Xu, F1
Tautenhahn, HM1
Dirsch, O1
Dahmen, U1
Kaur, R1
Kanthaje, S1
Taneja, S1
Dhiman, RK1
Chakraborti, A1
Okubo, S1
Ohta, T1
Shoyama, Y1
Uto, T1
Zhou, W1
Zeng, X1
Wu, X2
Morin, G1
Pinel, K1
Dias, K1
Seiliez, I1
Beaumatin, F1
Nguépy Keubo, FR1
Mboua, PC1
Djifack Tadongfack, T1
Fokouong Tchoffo, E1
Tasson Tatang, C1
Ide Zeuna, J1
Noupoue, EM1
Tsoplifack, CB1
Folefack, GO1
Kettani, M1
Bandelier, P1
Huo, J1
Li, H4
Yu, D1
Arulsamy, N1
AlAbbad, S1
Sardot, T1
Lekashvili, O1
Decato, D1
Lelj, F1
Alexander Ross, JB1
Rosenberg, E1
Nazir, H1
Muthuswamy, N1
Louis, C1
Jose, S1
Prakash, J1
Buan, MEM1
Flox, C1
Chavan, S1
Shi, X1
Kauranen, P1
Kallio, T1
Maia, G1
Tammeveski, K1
Lymperopoulos, N1
Carcadea, E1
Veziroglu, E1
Iranzo, A1
M Kannan, A1
Arunamata, A1
Tacy, TA1
Kache, S1
Mainwaring, RD1
Ma, M1
Maeda, K1
Punn, R1
Noguchi, S1
Hahn, S3
Iwasa, Y3
Ling, J2
Voccio, JP2
Kim, Y3
Song, J3
Bascuñán, J2
Chu, Y2
Tomita, M1
Cazorla, M1
Herrera, E1
Palomeque, E1
Saud, N1
Hoplock, LB1
Lobchuk, MM1
Lemoine, J1
Li, X11
Henson, MA1
Unsihuay, D1
Qiu, J1
Swaroop, S1
Nagornov, KO1
Kozhinov, AN1
Tsybin, YO1
Kuang, S1
Laskin, J1
Zin, NNINM1
Mohamad, MN1
Roslan, K1
Abdul Wafi, S1
Abdul Moin, NI1
Alias, A1
Zakaria, Y1
Abu-Bakar, N1
Naveed, A1
Jilani, K1
Siddique, AB1
Akbar, M1
Riaz, M1
Mushtaq, Z1
Sikandar, M1
Ilyas, S1
Bibi, I1
Asghar, A1
Rasool, G1
Irfan, M1
Li, XY1
Zhao, S1
Fan, XH1
Chen, KP1
Hua, W1
Liu, ZM1
Xue, XD1
Zhou, B1
Zhang, S3
Xing, YL1
Chen, MA1
Sun, Y1
Neradilek, MB1
Wu, XT1
Zhang, D2
Huang, W1
Cui, Y1
Yang, QQ1
Li, HW1
Zhao, XQ1
Hossein Rashidi, B1
Tarafdari, A1
Ghazimirsaeed, ST1
Shahrokh Tehraninezhad, E1
Keikha, F1
Eslami, B1
Ghazimirsaeed, SM1
Jafarabadi, M1
Silvani, Y1
Lovita, AND1
Maharani, A1
Wiyasa, IWA1
Sujuti, H1
Ratnawati, R1
Raras, TYM1
Lemin, AS1
Rahman, MM1
Pangarah, CA1
Kiyu, A1
Zeng, C2
Du, H1
Lin, D1
Jalan, D1
Rubagumya, F1
Hopman, WM1
Vanderpuye, V1
Lopes, G1
Seruga, B1
Booth, CM1
Berry, S1
Hammad, N1
Sajo, EA1
Okunade, KS1
Olorunfemi, G1
Rabiu, KA1
Anorlu, RI1
Xu, C2
Xiang, Y1
Xu, X2
Zhou, L2
Dong, X1
Tang, S2
Gao, XC1
Wei, CH1
Zhang, RG1
Cai, Q1
He, Y1
Tong, F1
Dong, JH1
Wu, G1
Dong, XR1
Tang, X1
Tao, F1
Xiang, W1
Zhao, Y2
Jin, L1
Tao, H1
Lei, Y1
Gan, H1
Huang, Y1
Chen, Y5
Chen, L3
Shan, A1
Zhao, H2
Wu, M2
Ma, Q1
Wang, J5
Zhang, E1
Zhang, J4
Li, Y5
Xue, F1
Deng, L1
Liu, L2
Yan, Z2
Wang, Y3
Meng, J1
Chen, G3
Anastassiadou, M1
Bernasconi, G1
Brancato, A1
Carrasco Cabrera, L1
Greco, L1
Jarrah, S1
Kazocina, A1
Leuschner, R1
Magrans, JO1
Miron, I1
Nave, S1
Pedersen, R1
Reich, H1
Rojas, A1
Sacchi, A1
Santos, M1
Theobald, A1
Vagenende, B1
Verani, A1
Du, L1
Liu, X1
Ren, Y1
Li, J8
Li, P3
Jiao, Q1
Meng, P1
Wang, F2
Wang, YS1
Wang, C4
Zhou, X2
Wang, W2
Wang, S2
Hou, J1
Zhang, A1
Lv, B1
Gao, C2
Pang, D1
Lu, K1
Ahmad, NH1
Wang, L2
Zhu, J2
Zhang, L2
Zhuang, T1
Tu, J1
Zhao, Z1
Qu, Y1
Yao, H1
Wang, X6
Lee, DF1
Shen, J3
Wen, L1
Huang, G3
Xie, X1
Zhao, Q1
Hu, W1
Zhang, Y7
Lu, J2
Li, M1
Li, W3
Wu, W1
Du, F1
Ji, H1
Yang, X2
Xu, Z1
Wan, L1
Wen, Q1
Cho, CH1
Zou, C1
Xiao, Z1
Liao, J1
Su, X1
Bi, Z1
Su, Q1
Huang, H1
Wei, Y2
Gao, Y2
Na, KJ1
Choi, H1
Oh, HR1
Kim, YH1
Lee, SB1
Jung, YJ1
Koh, J1
Park, S1
Lee, HJ1
Jeon, YK1
Chung, DH1
Paeng, JC1
Park, IK1
Kang, CH1
Cheon, GJ1
Kang, KW1
Lee, DS1
Kim, YT1
Pajuelo-Lozano, N1
Alcalá, S1
Sainz, B1
Perona, R1
Sanchez-Perez, I1
Logotheti, S1
Marquardt, S1
Gupta, SK1
Richter, C1
Edelhäuser, BAH1
Engelmann, D1
Brenmoehl, J1
Söhnchen, C1
Murr, N1
Alpers, M1
Singh, KP1
Wolkenhauer, O1
Heckl, D1
Spitschak, A1
Pützer, BM1
Liao, Y1
Cheng, J3
Kong, X1
Li, S2
Zhang, M4
Zhang, H4
Yang, T2
Dong, Y1
Xu, Y1
Yuan, Z1
Cao, J1
Zheng, Y2
Luo, Z2
Mei, Z1
Yao, Y2
Liu, Z2
Liang, C1
Yang, H2
Song, Y1
Yu, K1
Zhu, C1
Huang, Z1
Qian, J1
Ge, J1
Hu, J2
Wang, H2
Liu, Y4
Mi, Y1
Kong, H1
Xi, D1
Yan, W1
Luo, X1
Ning, Q1
Chang, X2
Zhang, T2
Wang, Q3
Rathore, MG1
Reddy, K1
Chen, H2
Shin, SH1
Ma, WY1
Bode, AM1
Dong, Z3
Mu, W1
Liu, C3
Gao, F1
Qi, Y1
Lu, H1
Zhang, X6
Cai, X2
Ji, RY1
Hou, Y3
Tian, J2
Shi, Y1
Ying, S1
Tan, M1
Feng, G1
Kuang, Y1
Chen, D1
Wu, D3
Zhu, ZQ1
Tang, HX1
Shi, ZE1
Kang, J1
Liu, Q1
Qi, J2
Mu, J1
Cong, Z1
Chen, S2
Fu, D1
Li, Z2
Celestrin, CP1
Rocha, GZ1
Stein, AM1
Guadagnini, D1
Tadelle, RM1
Saad, MJA1
Oliveira, AG1
Bianconi, V1
Bronzo, P1
Banach, M1
Sahebkar, A1
Mannarino, MR1
Pirro, M1
Patsourakos, NG1
Kouvari, M1
Kotidis, A1
Kalantzi, KI1
Tsoumani, ME1
Anastasiadis, F1
Andronikos, P1
Aslanidou, T1
Efraimidis, P1
Georgiopoulos, A1
Gerakiou, K1
Grigoriadou-Skouta, E1
Grigoropoulos, P1
Hatzopoulos, D1
Kartalis, A1
Lyras, A1
Markatos, G1
Mikrogeorgiou, A1
Myroforou, I1
Orkopoulos, A1
Pavlidis, P1
Petras, C1
Riga, M1
Skouloudi, M1
Smyrnioudis, N1
Thomaidis, K1
Tsikouri, GE1
Tsikouris, EI1
Zisimos, K1
Vavoulis, P1
Vitali, MG1
Vitsas, G1
Vogiatzidis, C1
Chantanis, S1
Fousas, S1
Panagiotakos, DB1
Tselepis, AD1
Jungen, C1
Alken, FA1
Eickholt, C1
Scherschel, K1
Kuklik, P1
Klatt, N1
Schwarzl, J1
Moser, J1
Jularic, M1
Akbulak, RO1
Schaeffer, B1
Willems, S1
Meyer, C1
Nowak, JK1
Szczepanik, M1
Trypuć, M1
Pogorzelski, A1
Bobkowski, W1
Grytczuk, M1
Minarowska, A1
Wójciak, R1
Walkowiak, J1
Lu, Y2
Xi, J1
Li, C2
Chen, W3
Hu, X1
Zhang, F1
Wei, H1
Wang, Z1
Gurzu, S1
Jung, I1
Sugimura, H2
Stefan-van Staden, RI1
Yamada, H1
Natsume, H1
Iwashita, Y1
Szodorai, R1
Szederjesi, J1
Yari, D1
Ehsanbakhsh, Z1
Validad, MH1
Langroudi, FH1
Esfandiari, H1
Prager, A1
Hassanpour, K1
Kurup, SP1
Mets-Halgrimson, R1
Yoon, H1
Zeid, JL1
Mets, MB1
Rahmani, B1
Araujo-Castillo, RV1
Culquichicón, C1
Solis Condor, R1
Efendi, F1
Sebayang, SK1
Astutik, E1
Hadisuyatmana, S1
Has, EMM1
Kuswanto, H1
Foroutan, T1
Ahmadi, F1
Moayer, F1
Khalvati, S1
Zhang, Q2
Lyu, Y1
Huang, J1
Yu, N1
Wen, Z1
Hou, H1
Zhao, T1
Gupta, A1
Khosla, N1
Govindasamy, V1
Saini, A1
Annapurna, K1
Dhakate, SR1
Akkaya, Ö1
Chandgude, AL1
Dömling, A1
Harnett, J1
Oakes, K1
Carè, J1
Leach, M1
Brown, D1
Cramer, H1
Pinder, TA1
Steel, A1
Anheyer, D1
Cantu, J1
Valle, J1
Flores, K1
Gonzalez, D1
Valdes, C1
Lopez, J1
Padilla, V1
Alcoutlabi, M1
Parsons, J1
Núñez, K1
Hamed, M1
Fort, D1
Bruce, D1
Thevenot, P1
Cohen, A1
Weber, P1
Menezes, AMB1
Gonçalves, H1
Perez-Padilla, R1
Jarvis, D1
de Oliveira, PD1
Wehrmeister, FC1
Mir, S1
Wong, J1
Ryan, CM1
Bellingham, G1
Singh, M2
Waseem, R1
Eckert, DJ1
Chung, F1
Hegde, H1
Shimpi, N1
Panny, A1
Glurich, I1
Christie, P1
Acharya, A1
English, KL1
Downs, M1
Goetchius, E1
Buxton, R1
Ryder, JW1
Ploutz-Snyder, R1
Guilliams, M1
Scott, JM1
Ploutz-Snyder, LL1
Martens, C1
Goplen, FK1
Aasen, T1
Gjestad, R1
Nordfalk, KF1
Nordahl, SHG1
Inoue, T1
Soshi, S1
Kubota, M1
Marumo, K1
Mortensen, NP1
Caffaro, MM1
Patel, PR2
Uddin, MJ1
Aravamudhan, S1
Sumner, SJ1
Fennell, TR1
Gal, RL1
Cohen, NJ1
Kruger, D1
Beck, RW1
Bergenstal, RM1
Calhoun, P1
Cushman, T1
Haban, A1
Hood, K1
Johnson, ML1
McArthur, T1
Olson, BA1
Weinstock, RS1
Oser, SM1
Oser, TK1
Bugielski, B1
Strayer, H1
Aleppo, G1
Maruyama, H1
Hirayama, K1
Yamashita, M1
Ohgi, K1
Tsujimoto, R1
Takayasu, M1
Shimohata, H1
Kobayashi, M1
Buscagan, TM1
Rees, DC1
Jaborek, JR1
Zerby, HN1
Wick, MP1
Fluharty, FL1
Moeller, SJ1
Razavi, P1
Dickler, MN1
Shah, PD1
Toy, W1
Brown, DN1
Won, HH1
Li, BT1
Shen, R1
Vasan, N1
Modi, S1
Jhaveri, K1
Caravella, BA1
Patil, S1
Selenica, P1
Zamora, S1
Cowan, AM1
Comen, E1
Singh, A1
Covey, A1
Berger, MF1
Hudis, CA1
Norton, L1
Nagy, RJ1
Odegaard, JI1
Lanman, RB1
Solit, DB1
Robson, ME1
Lacouture, ME1
Brogi, E1
Reis-Filho, JS1
Moynahan, ME1
Scaltriti, M1
Chandarlapaty, S1
Papouskova, K1
Moravcova, M1
Masrati, G1
Ben-Tal, N1
Sychrova, H1
Zimmermannova, O1
Fang, J1
Fan, Y1
Luo, T2
Su, H1
Tsetseris, L1
Anthopoulos, TD1
Liu, SF1
Zhao, K1
Sacan, O1
Turkyilmaz, IB1
Bayrak, BB1
Mutlu, O1
Akev, N1
Yanardag, R1
Gruber, S1
Kamnoedboon, P1
Özcan, M1
Srinivasan, M1
Jo, YH1
Oh, HK1
Jeong, SY1
Lee, BG1
Zheng, J1
Guan, H1
Li, D3
Tan, H1
Maji, TK1
J R, A1
Mukherjee, S1
Alexander, R1
Mondal, A1
Das, S1
Sharma, RK1
Chakraborty, NK1
Dasgupta, K1
Sharma, AMR1
Hawaldar, R1
Pandey, M1
Naik, A1
Majumdar, K1
Pal, SK1
Adarsh, KV1
Ray, SK1
Karmakar, D1
Ma, Y2
Gao, W1
Ma, S1
Lin, W1
Zhou, T1
Wu, T1
Wu, Q1
Ye, C1
He, X1
Jiang, F1
Yuan, D1
Chen, Q1
Hong, M1
Chen, K1
Hussain, M1
Razi, SS1
Yildiz, EA1
Zhao, J1
Yaglioglu, HG1
Donato, MD1
Jiang, J1
Jamil, MI1
Zhan, X1
Chen, F1
Cheng, D1
Wu, CT1
Utsunomiya, T1
Ichii, T1
Fujinami, S1
Nakajima, K1
Sanchez, DM1
Raucci, U1
Ferreras, KN1
Martínez, TJ1
Mordi, NA1
Mordi, IR1
Singh, JS1
McCrimmon, RJ1
Struthers, AD1
Lang, CC1
Wang, XW1
Yuan, LJ1
Yang, Y1
Chen, WF1
Luo, R1
Yang, K2
Amarasiri, SS1
Attanayake, AP1
Arawwawala, LDAM1
Jayatilaka, KAPW1
Mudduwa, LKB1
Ogunsuyi, O2
Akanni, O1
Alabi, O1
Alimba, C1
Adaramoye, O1
Cambier, S1
Eswara, S1
Gutleb, AC1
Bakare, A1
Gu, Z1
Cong, J1
Pellegrini, M1
Palmieri, S1
Ricci, A1
Serio, A1
Paparella, A1
Lo Sterzo, C1
Jadeja, SD1
Vaishnav, J1
Mansuri, MS1
Shah, C1
Mayatra, JM1
Shah, A1
Begum, R1
Song, H2
Lian, Y1
Wan, T1
Schultz-Lebahn, A1
Skipper, MT1
Hvas, AM1
Larsen, OH1
Hijazi, Z1
Granger, CB1
Hohnloser, SH1
Westerbergh, J1
Lindbäck, J1
Alexander, JH1
Keltai, M1
Parkhomenko, A1
López-Sendón, JL1
Lopes, RD1
Siegbahn, A1
Wallentin, L1
El-Tarabany, MS1
Saleh, AA1
El-Araby, IE1
El-Magd, MA1
van Ginkel, MPH1
Schijven, MP1
van Grevenstein, WMU1
Schreuder, HWR1
Pereira, EDM1
da Silva, J1
Carvalho, PDS1
Grivicich, I1
Picada, JN1
Salgado Júnior, IB1
Vasques, GJ1
Pereira, MADS1
Reginatto, FH1
Ferraz, ABF1
Vasilenko, EA1
Gorshkova, EN1
Astrakhantseva, IV1
Drutskaya, MS1
Tillib, SV1
Nedospasov, SA1
Mokhonov, VV1
Nam, YW1
Cui, M1
Orfali, R1
Viegas, A1
Nguyen, M1
Mohammed, EHM1
Zoghebi, KA1
Rahighi, S1
Parang, K1
Patterson, KC1
Kahanovitch, U1
Gonçalves, CM1
Hablitz, JJ1
Staruschenko, A1
Mulkey, DK1
Olsen, ML1
Gu, L1
Cao, X1
Mukhtar, A1
Wu, K1
Zhang, YY1
Zhu, Y1
Lu, DZ1
Dong, W1
Bi, WJ1
Feng, XJ1
Wen, LM1
Sun, H1
Qi, MC1
Chang, CC1
Dinh, TK1
Lee, YA1
Wang, FN1
Sung, YC1
Yu, PL1
Chiu, SC1
Shih, YC1
Wu, CY1
Huang, YD1
Lu, TT1
Wan, D1
Sakizadeh, J1
Cline, JP1
Snyder, MA1
Kiely, CJ1
McIntosh, S1
Jiang, X1
Cao, JW1
Zhao, CK1
Yang, R1
Zhang, QY1
Chen, KJ2
Liu, H4
He, Z1
Chen, B1
Wu, J1
Du, X1
Moore, J1
Blank, BR1
Eksterowicz, J1
Sutimantanapi, D1
Yuen, N1
Metzger, T1
Chan, B1
Huang, T1
Chen, X2
Duong, F1
Kong, W1
Chang, JH1
Sun, J1
Zavorotinskaya, T1
Ye, Q1
Junttila, MR1
Ndubaku, C1
Friedman, LS1
Fantin, VR1
Sun, D1
Fei, P1
Xie, Q1
Jiang, Y2
Feng, H1
Chang, Y1
Kang, H1
Xing, M1
Chen, J1
Shao, Z1
Yuan, C1
Wu, Y3
Allan, R1
Canham, K1
Wallace, R1
Singh, D1
Ward, J1
Cooper, A1
Newcomb, C1
Nammour, S1
El Mobadder, M1
Maalouf, E1
Namour, M1
Namour, A1
Rey, G1
Matamba, P1
Matys, J1
Zeinoun, T1
Grzech-Leśniak, K1
Segabinazi Peserico, C1
Garozi, L1
Zagatto, AM1
Machado, FA1
Hirth, JM1
Dinehart, EE1
Lin, YL1
Kuo, YF1
Nouri, SS1
Ritchie, C1
Volow, A1
Li, B4
McSpadden, S1
Dearman, K1
Kotwal, A1
Sudore, RL1
Ward, L1
Thakur, A1
Kondadasula, SV1
Ji, K1
Schalk, DL1
Bliemeister, E1
Ung, J1
Aboukameel, A1
Casarez, E1
Sloane, BF1
Lum, LG1
Xiao, M1
Feng, X1
Gao, R1
Du, B1
Brooks, T1
Zwirner, J1
Hammer, N1
Ondruschka, B1
Jermy, M1
Luengo, A1
Marzo, I1
Reback, M1
Daubit, IM1
Fernández-Moreira, V1
Metzler-Nolte, N1
Gimeno, MC1
Tonchev, I1
Heberman, D1
Peretz, A1
Medvedovsky, AT1
Gotsman, I1
Rashi, Y1
Poles, L1
Goland, S1
Perlman, GY1
Danenberg, HD1
Beeri, R1
Shuvy, M1
Fu, Q1
Yang, D1
Sarapulova, A1
Pang, Q1
Meng, Y1
Wei, L1
Ehrenberg, H1
Kim, CC1
Jeong, SH1
Oh, KH1
Nam, KT1
Sun, JY1
Ning, J1
Duan, Z1
Kershaw, SV1
Rogach, AL1
Gao, Z1
Wang, T1
Li, Q2
Cao, T1
Guo, L1
Fu, Y1
Seeger, ZL1
Izgorodina, EI1
Hue, S1
Beldi-Ferchiou, A1
Bendib, I1
Surenaud, M1
Fourati, S1
Frapard, T1
Rivoal, S1
Razazi, K1
Carteaux, G1
Delfau-Larue, MH1
Mekontso-Dessap, A1
Audureau, E1
de Prost, N1
Gao, SS1
Duangthip, D1
Lo, ECM1
Chu, CH1
Roberts, W1
Rosenheck, RA1
Miyake, T1
Kimoto, E1
Luo, L2
Mathialagan, S1
Horlbogen, LM1
Ramanathan, R1
Wood, LS1
Johnson, JG1
Le, VH1
Vourvahis, M1
Rodrigues, AD1
Muto, C1
Furihata, K1
Sugiyama, Y1
Kusuhara, H1
Gong, Q1
Song, W1
Sun, B1
Cao, P1
Gu, S1
Sun, X1
Zhou, G1
Toma, C1
Khandhar, S1
Zalewski, AM1
D'Auria, SJ1
Tu, TM1
Jaber, WA1
Cho, J2
Suwandaratne, NS1
Razek, S1
Choi, YH1
Piper, LFJ1
Watson, DF1
Banerjee, S1
Xie, S1
Lindsay, AP1
Bates, FS1
Lodge, TP1
Hao, Y1
Chapovetsky, A1
Liu, JJ1
Welborn, M1
Luna, JM1
Do, T1
Haiges, R1
Miller Iii, TF1
Marinescu, SC1
Lopez, SA1
Compter, I1
Eekers, DBP1
Hoeben, A1
Rouschop, KMA1
Reymen, B1
Ackermans, L1
Beckervordersantforth, J1
Bauer, NJC1
Anten, MM1
Wesseling, P1
Postma, AA1
De Ruysscher, D1
Lambin, P1
Qiang, L1
Yang, S1
Cui, YH1
He, YY1
Kumar, SK1
Jacobus, SJ1
Cohen, AD1
Weiss, M1
Callander, N1
Singh, AK1
Parker, TL1
Menter, A1
Parsons, B1
Kumar, P1
Kapoor, P1
Rosenberg, A1
Zonder, JA1
Faber, E1
Lonial, S1
Anderson, KC1
Richardson, PG1
Orlowski, RZ1
Wagner, LI1
Rajkumar, SV1
Li, G2
Hou, G1
Cui, J1
Xie, H1
Sun, Z2
Fang, Z1
Dunstand-Guzmán, E1
Hallal-Calleros, C1
Hernández-Velázquez, VM1
Canales-Vargas, EJ1
Domínguez-Roldan, R1
Pedernera, M1
Peña-Chora, G1
Flores-Pérez, I1
Kim, MJ1
Han, C1
White, K1
Park, HJ1
Ding, D1
Boyd, K1
Rothenberger, C1
Bose, U1
Carmichael, P1
Linser, PJ1
Tanokura, M1
Salvi, R1
Someya, S1
Samuni, A1
Goldstein, S1
Divya, KP1
Dharuman, V1
Feng, J2
Qian, Y1
Cheng, Q1
Ma, H1
Ren, X1
Wei, Q1
Pan, W1
Guo, J1
Situ, B1
An, T1
Zheng, L1
Augusto, S1
Ratola, N1
Tarín-Carrasco, P1
Jiménez-Guerrero, P1
Turco, M1
Schuhmacher, M1
Costa, S1
Teixeira, JP1
Costa, C1
Syed, A1
Marraiki, N1
Al-Rashed, S1
Elgorban, AM1
Yassin, MT1
Chankhanittha, T1
Nanan, S1
Sorokina, KN1
Samoylova, YV1
Gromov, NV1
Ogorodnikova, OL1
Parmon, VN1
Ye, J1
Liao, W2
Zhang, P3
Nabi, M1
Cai, Y1
Li, F1
Alsbou, EM1
Omari, KW1
Adeosun, WA1
Asiri, AM1
Marwani, HM1
Barral, M1
Jemal-Turki, A1
Beuvon, F1
Soyer, P1
Camparo, P1
Cornud, F1
Atwater, BD1
Jones, WS1
Loring, Z1
Friedman, DJ1
Namburath, M1
Papirio, S1
Moscariello, C1
Di Costanzo, N1
Pirozzi, F1
Alappat, BJ1
Sreekrishnan, TR1
Volpin, F1
Woo, YC1
Kim, H1
Freguia, S1
Jeong, N1
Choi, JS1
Phuntsho, S1
Shon, HK1
Domínguez-Zambrano, E1
Pedraza-Chaverri, J1
López-Santos, AL1
Medina-Campos, ON1
Cruz-Rivera, C1
Bueno-Hernández, F1
Espinosa-Cuevas, A1
Bulavaitė, A1
Dalgediene, I1
Michailoviene, V1
Pleckaityte, M1
Sauerbier, P1
Köhler, R1
Renner, G1
Militz, H1
Sun, W1
Zhu, W1
Zhang, W2
Fang, D1
Grahn, THM1
Jiang, L2
Huang, CY1
Chang, YJ1
Wei, PL1
Hung, CS1
Zhang, N1
Lyu, X1
Yan, X1
Xiong, H1
Zeng, Y1
Lian, J1
Ni, Z1
He, F1
Cao, Z1
Fang, W1
Chai, D1
Wen, Y1
Chu, F1
Helmy, SA1
El-Mesery, M1
El-Karef, A1
Eissa, LA1
El Gayar, AM1
Bartolini, D1
Dallaglio, K1
Torquato, P1
Piroddi, M1
Galli, F1
Sheng, X1
Zhu, P1
Qin, J1
Sun, XJ1
Ma, LY1
Zhang, MX1
Jiang, CC1
Nazim, UM1
Park, SY1
Zai, W1
Han, Y1
Wu, Z1
Fan, J2
Luan, J1
Jin, X1
Fu, X1
Gao, H1
Ju, D1
Masuda, S1
Mizukami, S1
Eguchi, A1
Ichikawa, R1
Nakamura, M1
Nakamura, K1
Okada, R1
Tanaka, T1
Shibutani, M1
Yoshida, T1
Sun, K3
Guo, XL2
Zhao, QD3
Jing, YY1
Kou, XR1
Xie, XQ2
Zhou, Y1
Cai, N1
Gao, L2
Zhao, X2
Zhang, SS2
Song, JR2
Deng, WJ3
Li, R3
Wu, MC2
Wei, LX3
Yang, B1
Zhou, Q1
Shang, D1
Guo, Y1
Song, Z1
Zheng, Q1
Xiong, J1
Zhang, JW2
Lv, G1
Cheng, HY1
Song, YJ1
Han, ZP1
Yao, S1
Xie, B1
Mohamed, FE1
Al-Jehani, RM1
Minogue, SS1
Andreola, F1
Winstanley, A1
Olde Damink, SW1
Habtesion, A1
Malagó, M1
Davies, N1
Luong, TV1
Dhillon, AP1
Mookerjee, RP1
Dhar, DK1
Jalan, R1
Gao, Q1
Geng, L1
Shi, B1
Yang, F1
Ragusa, S1
Ivanov, KI1
Zangger, N1
Ceteci, F1
Bernier-Latmani, J1
Milatos, S1
Joseph, JM1
Tercier, S1
Bouzourene, H1
Bosman, FT1
Letovanec, I1
Marra, G1
Gonzalez, M1
Cammareri, P1
Sansom, OJ1
Delorenzi, M1
Petrova, TV1
Li, T1
Tang, ZH1
Xu, WS1
Wu, GS1
Wang, YF1
Chang, LL1
Zhu, H1
Chen, XP1
Wang, YT1
Lu, JJ1
Quan, M1
Liu, S1
Feng, S1
Liang, J1
Gui, Y1
Yeganeh, M1
Donates, YC1
Tobelaim, WS1
Chababi, W1
Mayhue, M1
Yoshimura, A1
Ramanathan, S1
Saucier, C1
Ilangumaran, S1
Chen, P3
Hu, T2
Liang, Y1
Pan, Y1
Wei, D1
Jeong, LS1
Qi, H1
Yang, M1
Hoffman, RM1
Jia, L1
Shi, YM1
Yang, L1
Geng, YD1
Zhang, C1
Kong, LY1
Xie, F1
Liu, J1
Gong, Z1
Zou, H1
Yu, Y1
Zhang, G1
Gao, J1
Zhong, Y1
Gong, L1
Di, C1
Xia, X1
Shi, J1
Xu, H1
Ding, ZB1
Hui, B1
Shi, YH1
Zhou, J1
Peng, YF1
Gu, CY1
Shi, GM1
Ke, AW1
Wang, XY1
Song, K1
Dai, Z1
Shen, YH1
Shimizu, S1
Takehara, T1
Hikita, H1
Kodama, T1
Tsunematsu, H1
Miyagi, T1
Hosui, A1
Ishida, H1
Tatsumi, T1
Kanto, T1
Hiramatsu, N1
Fujita, N1
Yoshimori, T1
Hayashi, N1
Yanze, MF1
Lee, WS1
Poon, K1
Piquette-Miller, M1
Macgregor, RB1
Horiguchi, M1
Arita, M1
Kaempf-Rotzoll, DE1
Tsujimoto, M1
Inoue, K1
Arai, H1
Thomas, HC1
Bassendine, MF1
Moriarity, DM1
DiSorbo, DM1
Litwack, G1
Savage, CR1
Schwartz, AL2
Bolognesi, A1
Fridovich, SE1
Dashti, N3
Wolfbauer, G3
Koren, E1
Knowles, B1
Alaupovic, P2
Hajjar, KA1
Reynolds, CM1
Erbacher, P1
Roche, AC1
Monsigny, M1
Midoux, P1
Rosen, JM1
Rothblat, GH1
Muhlbauer, JE1
Pathak, MA1
Suzuki, S1
Florén, CH1
Underhill, DM1
Owensby, DA1
Morton, PA1
Okuda, M1
Tokunaga, R1
Taketani, S1
Odum, L1
el-Mofty, MM1
Khudoley, VV1
Sakr, SA1
Abdel-Gawad, HS1
Sathre, KA1
Tsang, ML1
Weatherbee, JA1
Steer, CJ1
Smith, RM1
Jarett, L1
Pittman, RC1
Knecht, TP1
Rosenbaum, MS1
Taylor, CA1
McClain, DA1
Olefsky, JM1
Hortin, G1
Strauss, AW1
Granot, E1
Tabas, I1
Tall, AR1
Braulke, T1
Geuze, HJ1
Slot, JW1
Hasilik, A1
von Figura, K1
Peters, M1
Frenzel, H1
Kade, H1
Boyd, CM1
Lieberman, LM1
Beierwaltes, WH1
Varma, VM1
Johnston, GS1
Jones, AE1

Reviews

4 reviews available for chloroquine and Liver Neoplasms

ArticleYear
Psychological distress among health care professionals of the three COVID-19 most affected Regions in Cameroon: Prevalence and associated factors.
    Annales medico-psychologiques, 2021, Volume: 179, Issue:2

    Topics: 3' Untranslated Regions; 5'-Nucleotidase; A549 Cells; Accidental Falls; Acetylcholinesterase; Acryli

2021
Nrf2-p62 autophagy pathway and its response to oxidative stress in hepatocellular carcinoma.
    Translational research : the journal of laboratory and clinical medicine, 2018, Volume: 193

    Topics: Animals; Autophagy; Carcinoma, Hepatocellular; Chloroquine; Humans; Hydroxychloroquine; Liver Neopla

2018
Immunological and anti-viral therapy of chronic hepatitis B virus infection.
    Clinics in gastroenterology, 1980, Volume: 9, Issue:1

    Topics: Adjuvants, Immunologic; Antibody Formation; Antiviral Agents; Carcinoma, Hepatocellular; Chloroquine

1980
Porphyria cutanea tarda.
    International journal of dermatology, 1979, Volume: 18, Issue:10

    Topics: Adolescent; Aged; Alcoholism; Animals; Chick Embryo; Child; Chloroquine; Diagnosis, Differential; He

1979

Trials

2 trials available for chloroquine and Liver Neoplasms

ArticleYear
Psychological distress among health care professionals of the three COVID-19 most affected Regions in Cameroon: Prevalence and associated factors.
    Annales medico-psychologiques, 2021, Volume: 179, Issue:2

    Topics: 3' Untranslated Regions; 5'-Nucleotidase; A549 Cells; Accidental Falls; Acetylcholinesterase; Acryli

2021
Diagnostic efficacy of a radioiodinated chloroquine analog in patients with malignant melanoma.
    Journal of nuclear medicine : official publication, Society of Nuclear Medicine, 1970, Volume: 11, Issue:8

    Topics: Brain Neoplasms; Chloroquine; Clinical Trials as Topic; Eye Neoplasms; Humans; Iodine Radioisotopes;

1970

Other Studies

58 other studies available for chloroquine and Liver Neoplasms

ArticleYear
Blocking autophagy with chloroquine aggravates lipid accumulation and reduces intracellular energy synthesis in hepatocellular carcinoma cells, both contributing to its anti-proliferative effect.
    Journal of cancer research and clinical oncology, 2022, Volume: 148, Issue:12

    Topics: Adenosine Triphosphate; Autophagy; Autophagy-Related Proteins; Carcinoma, Hepatocellular; Cell Line,

2022
miR-23b-3p Modulating Cytoprotective Autophagy and Glutamine Addiction in Sorafenib Resistant HepG2, a Hepatocellular Carcinoma Cell Line.
    Genes, 2022, 08-01, Volume: 13, Issue:8

    Topics: Autophagy; Carcinoma, Hepatocellular; Cell Line; Chloroquine; Gene Expression Regulation, Neoplastic

2022
Arctigenin suppresses cell proliferation via autophagy inhibition in hepatocellular carcinoma cells.
    Journal of natural medicines, 2020, Volume: 74, Issue:3

    Topics: Adenine; Apoptosis; Apoptosis Regulatory Proteins; Arctium; Autophagy; Carcinoma, Hepatocellular; Ce

2020
Effect of Oleanolic Acid on Apoptosis and Autophagy of SMMC-7721 Hepatoma Cells.
    Medical science monitor : international medical journal of experimental and clinical research, 2020, May-19, Volume: 26

    Topics: Adenine; Adenosine Triphosphate; Apoptosis; Autophagy; Carcinoma, Hepatocellular; Cell Line, Tumor;

2020
RTH-149 Cell Line, a Useful Tool to Decipher Molecular Mechanisms Related to Fish Nutrition.
    Cells, 2020, 07-22, Volume: 9, Issue:8

    Topics: Amino Acids; Animals; Aquaculture; Autophagy; Carcinoma, Hepatocellular; Cell Line, Tumor; Chloroqui

2020
BCAT1 decreases the sensitivity of cancer cells to cisplatin by regulating mTOR-mediated autophagy via branched-chain amino acid metabolism.
    Cell death & disease, 2021, 02-10, Volume: 12, Issue:2

    Topics: Amino Acids, Branched-Chain; Animals; Antineoplastic Agents; Autophagy; Carcinoma, Hepatocellular; C

2021
Methyl gallate, gallic acid-derived compound, inhibit cell proliferation through increasing ROS production and apoptosis in hepatocellular carcinoma cells.
    PloS one, 2021, Volume: 16, Issue:3

    Topics: Animals; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Autophagy; Carcinoma, Hepatocell

2021
HSF1 upregulates ATG4B expression and enhances epirubicin-induced protective autophagy in hepatocellular carcinoma cells.
    Cancer letters, 2017, 11-28, Volume: 409

    Topics: Adenine; Animals; Antibiotics, Antineoplastic; Autophagy; Autophagy-Related Proteins; Carcinoma, Hep

2017
Luteolin Promotes Cell Apoptosis by Inducing Autophagy in Hepatocellular Carcinoma.
    Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology, 2017, Volume: 43, Issue:5

    Topics: Apoptosis; Autophagosomes; Autophagy; Beclin-1; Blotting, Western; Carcinoma, Hepatocellular; Caspas

2017
Chloroquine upregulates TRAIL/TRAILR2 expression and potentiates doxorubicin anti-tumor activity in thioacetamide-induced hepatocellular carcinoma model.
    Chemico-biological interactions, 2018, Jan-05, Volume: 279

    Topics: Animals; Carcinoma, Hepatocellular; Caspases; Chloroquine; Doxorubicin; Gene Expression Regulation;

2018
The biological role of autophagy in regulating and controlling the proliferation of liver cancer cells induced by bufalin.
    Oncology reports, 2018, Volume: 39, Issue:6

    Topics: Adenine; Autophagy; Beclin-1; Bufanolides; Carcinoma, Hepatocellular; Cell Cycle; Cell Line, Tumor;

2018
[Chloroquine induces apoptosis of human hepatocellular carcinoma cells in vitro by miR-26b-mediated regulation of Mcl-1].
    Nan fang yi ke da xue xue bao = Journal of Southern Medical University, 2018, Apr-20, Volume: 38, Issue:4

    Topics: Adenosine Triphosphate; Apoptosis; Carcinoma, Hepatocellular; Cell Proliferation; Chloroquine; Hep G

2018
Attenuation of autophagy flux by 6-shogaol sensitizes human liver cancer cells to TRAIL-induced apoptosis via p53 and ROS.
    International journal of molecular medicine, 2019, Volume: 43, Issue:2

    Topics: Acetylcysteine; Apoptosis; Autophagy; Caspases, Initiator; Catechols; Cell Line, Tumor; Chloroquine;

2019
Targeting PARP and autophagy evoked synergistic lethality in hepatocellular carcinoma.
    Carcinogenesis, 2020, 05-14, Volume: 41, Issue:3

    Topics: Animals; Apoptosis; Autophagy; Carcinoma, Hepatocellular; Cell Proliferation; Chloroquine; Drug Syne

2020
Immunohistochemical expression of autophagosome markers LC3 and p62 in preneoplastic liver foci in high fat diet-fed rats.
    The Journal of toxicological sciences, 2019, Volume: 44, Issue:8

    Topics: Amiodarone; Animals; Autophagosomes; Autophagy; Autophagy-Related Protein 5; Chloroquine; Diet, High

2019
Paradoxical role of autophagy in the dysplastic and tumor-forming stages of hepatocarcinoma development in rats.
    Cell death & disease, 2013, Feb-21, Volume: 4

    Topics: Animals; Antioxidants; Autophagy; Carcinoma, Hepatocellular; Cell Proliferation; Cell Transformation

2013
Autophagy promotes hepatocellular carcinoma cell invasion through activation of epithelial-mesenchymal transition.
    Carcinogenesis, 2013, Volume: 34, Issue:6

    Topics: Autophagy; Autophagy-Related Protein 7; Autophagy-Related Proteins; Carcinoma, Hepatocellular; Cell

2013
Chloroquine promotes the anticancer effect of TACE in a rabbit VX2 liver tumor model.
    International journal of biological sciences, 2013, Volume: 9, Issue:4

    Topics: ADAM Proteins; ADAM17 Protein; Animals; Antineoplastic Agents; Apoptosis; Chloroquine; Drug Synergis

2013
Autophagy contributes to the survival of CD133+ liver cancer stem cells in the hypoxic and nutrient-deprived tumor microenvironment.
    Cancer letters, 2013, Oct-01, Volume: 339, Issue:1

    Topics: AC133 Antigen; Animals; Antigens, CD; Autophagy; Cell Hypoxia; Cell Line, Tumor; Cell Survival; Chlo

2013
Blocking autophagic flux enhances matrine-induced apoptosis in human hepatoma cells.
    International journal of molecular sciences, 2013, Nov-25, Volume: 14, Issue:12

    Topics: Adaptor Proteins, Signal Transducing; Alkaloids; Apoptosis; Apoptosis Regulatory Proteins; Autophagy

2013
Effect of toll-like receptor 7 and 9 targeted therapy to prevent the development of hepatocellular carcinoma.
    Liver international : official journal of the International Association for the Study of the Liver, 2015, Volume: 35, Issue:3

    Topics: Animals; Carcinoma, Hepatocellular; Case-Control Studies; Cell Proliferation; Chloroquine; DNA; Hep

2015
Carnosic acid induces autophagic cell death through inhibition of the Akt/mTOR pathway in human hepatoma cells.
    Journal of applied toxicology : JAT, 2015, Volume: 35, Issue:5

    Topics: Abietanes; Adenine; Apoptosis; Autophagy; Cell Proliferation; Chloroquine; Gene Silencing; Hep G2 Ce

2015
PROX1 promotes metabolic adaptation and fuels outgrowth of Wnt(high) metastatic colon cancer cells.
    Cell reports, 2014, Sep-25, Volume: 8, Issue:6

    Topics: Animals; Apoptosis; Cell Culture Techniques; Cell Line, Tumor; Cell Proliferation; Chloroquine; Colo

2014
Platycodin D triggers autophagy through activation of extracellular signal-regulated kinase in hepatocellular carcinoma HepG2 cells.
    European journal of pharmacology, 2015, Feb-15, Volume: 749

    Topics: Autophagy; Carcinoma, Hepatocellular; Cell Line, Tumor; Chloroquine; Extracellular Signal-Regulated

2015
NS5ATP9 Promotes Beclin 1-Dependent Starvation-Induced Autophagy of Hepatoblastoma Cells.
    Journal of cellular biochemistry, 2015, Volume: 116, Issue:8

    Topics: Adenine; Apoptosis Regulatory Proteins; Autophagy; Beclin-1; Carrier Proteins; Cell Proliferation; C

2015
Regulation of MET receptor tyrosine kinase signaling by suppressor of cytokine signaling 1 in hepatocellular carcinoma.
    Oncogene, 2015, Nov-12, Volume: 34, Issue:46

    Topics: Animals; Carcinoma, Hepatocellular; Cell Line, Tumor; Cell Proliferation; Chlorocebus aethiops; Chlo

2015
Synergistic inhibition of autophagy and neddylation pathways as a novel therapeutic approach for targeting liver cancer.
    Oncotarget, 2015, Apr-20, Volume: 6, Issue:11

    Topics: Antineoplastic Agents; Apoptosis Regulatory Proteins; Autophagy; Carcinoma, Hepatocellular; Cell Lin

2015
Chloroquine inhibits hepatocellular carcinoma cell growth in vitro and in vivo.
    Oncology reports, 2016, Volume: 35, Issue:1

    Topics: Animals; Antineoplastic Agents; Carcinoma, Hepatocellular; Cell Cycle Checkpoints; Cell Line, Tumor;

2016
Polyphyllin I induced-apoptosis is enhanced by inhibition of autophagy in human hepatocellular carcinoma cells.
    Phytomedicine : international journal of phytotherapy and phytopharmacology, 2015, Dec-01, Volume: 22, Issue:13

    Topics: Apoptosis; Autophagy; Carcinoma, Hepatocellular; Caspases; Cell Line, Tumor; Cell Proliferation; Chl

2015
Codelivery of salinomycin and chloroquine by liposomes enables synergistic antitumor activity in vitro.
    Nanomedicine (London, England), 2016, Volume: 11, Issue:14

    Topics: Anti-Infective Agents; Antineoplastic Combined Chemotherapy Protocols; Autophagy; Cell Line, Tumor;

2016
AKT/mTOR signaling pathway is involved in salvianolic acid B-induced autophagy and apoptosis in hepatocellular carcinoma cells.
    International journal of oncology, 2016, Volume: 49, Issue:6

    Topics: Adenine; Antineoplastic Agents; Apoptosis; Autophagy; Beclin-1; Benzofurans; Carcinoma, Hepatocellul

2016
Autophagy activation in hepatocellular carcinoma contributes to the tolerance of oxaliplatin via reactive oxygen species modulation.
    Clinical cancer research : an official journal of the American Association for Cancer Research, 2011, Oct-01, Volume: 17, Issue:19

    Topics: Animals; Antimalarials; Antineoplastic Agents; Autophagy; Carcinoma, Hepatocellular; Cell Line, Tumo

2011
Inhibition of autophagy potentiates the antitumor effect of the multikinase inhibitor sorafenib in hepatocellular carcinoma.
    International journal of cancer, 2012, Aug-01, Volume: 131, Issue:3

    Topics: Adaptor Proteins, Signal Transducing; Animals; Antineoplastic Agents; Apoptosis; Autophagy; Autophag

2012
Cellular uptake and metabolism of DNA frayed wires.
    Biochemistry, 2003, Oct-07, Volume: 42, Issue:39

    Topics: Adenosine Triphosphate; Binding, Competitive; Carcinoma, Hepatocellular; Cell Nucleus; Cell Survival

2003
pH-dependent translocation of alpha-tocopherol transfer protein (alpha-TTP) between hepatic cytosol and late endosomes.
    Genes to cells : devoted to molecular & cellular mechanisms, 2003, Volume: 8, Issue:10

    Topics: Amino Acid Sequence; Androstadienes; Animals; Biological Transport; Brefeldin A; Carcinoma, Hepatoce

2003
Epidermal growth factor stimulation of ornithine decarboxylase activity in a human hepatoma cell line.
    Proceedings of the National Academy of Sciences of the United States of America, 1981, Volume: 78, Issue:5

    Topics: Ammonium Chloride; Carboxy-Lyases; Carcinoma, Hepatocellular; Cell Line; Chloroquine; Colchicine; Cy

1981
Recycling of the asialoglycoprotein receptor and the effect of lysosomotropic amines in hepatoma cells.
    The Journal of cell biology, 1984, Volume: 98, Issue:2

    Topics: Asialoglycoprotein Receptor; Asialoglycoproteins; Carcinoma, Hepatocellular; Cell Line; Cell Membran

1984
Catabolism of human low density lipoproteins by human hepatoma cell line HepG2.
    Biochimica et biophysica acta, 1984, Jul-26, Volume: 794, Issue:3

    Topics: Binding, Competitive; Carcinoma, Hepatocellular; Cell Line; Chloroquine; Colchicine; Humans; Lipopro

1984
alpha-Fucose-mediated binding and degradation of tissue-type plasminogen activator by HepG2 cells.
    The Journal of clinical investigation, 1994, Volume: 93, Issue:2

    Topics: Ammonium Chloride; Azides; Carcinoma, Hepatocellular; Cell Line; Chloroquine; Dose-Response Relation

1994
The reduction of the positive charges of polylysine by partial gluconoylation increases the transfection efficiency of polylysine/DNA complexes.
    Biochimica et biophysica acta, 1997, Feb-21, Volume: 1324, Issue:1

    Topics: Acylation; Amino Acid Sequence; Carcinoma, Hepatocellular; Chloroquine; DNA, Recombinant; Gluconates

1997
Origin of fatty acids of cholesteryl ester accumulated by Fu5AH cells in culture.
    Lipids, 1977, Volume: 12, Issue:2

    Topics: Carcinoma, Hepatocellular; Cell Line; Chloroquine; Cholesterol; Cholesterol Esters; Culture Media; F

1977
[Studies on lysosomes in hepatic disorders (author's transl)].
    [Hokkaido igaku zasshi] The Hokkaido journal of medical science, 1979, Volume: 54, Issue:2

    Topics: Acid Phosphatase; Animals; Chemical and Drug Induced Liver Injury; Chloroquine; Glucuronidase; Hexos

1979
Polymyxin B enhances low density lipoprotein catabolism in hepatic and extrahepatic cells.
    Arteriosclerosis and thrombosis : a journal of vascular biology, 1992, Volume: 12, Issue:4

    Topics: Animals; Calcium; Carcinoma, Hepatocellular; Cattle; Cells, Cultured; Chloroquine; Colchicine; Endot

1992
Endocytosis and lysosomal delivery of tissue plasminogen activator-inhibitor 1 complexes in Hep G2 cells.
    Blood, 1992, Dec-01, Volume: 80, Issue:11

    Topics: Ammonium Chloride; beta-N-Acetylhexosaminidases; Carcinoma, Hepatocellular; Chloroquine; Endocytosis

1992
Expression of haptoglobin receptors in human hepatoma cells.
    Biochimica et biophysica acta, 1992, Aug-12, Volume: 1136, Issue:2

    Topics: Biological Transport; Cadaverine; Carcinoma, Hepatocellular; Cells, Cultured; Chloroquine; Endocytos

1992
Biosynthesis of inter-alpha-trypsin inhibitor and alpha 1-microglobulin in a human hepatoma cell line.
    The International journal of biochemistry, 1992, Volume: 24, Issue:2

    Topics: Alpha-Globulins; Carbohydrate Metabolism; Carbohydrates; Carcinoma, Hepatocellular; Chloroquine; Ele

1992
The carcinogenicity of some antimalarial drugs using the Egyptian toad Bufo regularis as a biological test animal.
    Nutrition and cancer, 1992, Volume: 18, Issue:2

    Topics: Animals; Antimalarials; Bufonidae; Chloroquine; Disease Models, Animal; Drug Combinations; Female; K

1992
Binding and internalization of transforming growth factor-beta 1 by human hepatoma cells: evidence for receptor recycling.
    Hepatology (Baltimore, Md.), 1991, Volume: 14, Issue:2

    Topics: Binding, Competitive; Carcinoma, Hepatocellular; Chloroquine; Cycloheximide; Humans; Hydrogen-Ion Co

1991
Partial characterization of mechanism of insulin accumulation in H35 hepatoma cell nuclei.
    Diabetes, 1990, Volume: 39, Issue:6

    Topics: Adenosine Triphosphate; Biological Transport; Carcinoma, Hepatocellular; Cell Nucleus; Chloroquine;

1990
A nonendocytotic mechanism for the selective uptake of high density lipoprotein-associated cholesterol esters.
    The Journal of biological chemistry, 1987, Feb-25, Volume: 262, Issue:6

    Topics: Adrenal Cortex Neoplasms; alpha-Fetoproteins; Animals; Apolipoprotein A-I; Apolipoproteins A; Asialo

1987
Evidence for two independent pathways of insulin-receptor internalization in hepatocytes and hepatoma cells.
    Diabetes, 1988, Volume: 37, Issue:6

    Topics: 2,4-Dinitrophenol; Animals; Biological Transport; Biotransformation; Carcinoma, Hepatocellular; Cell

1988
Binding and degradation of human high-density lipoproteins by human hepatoma cell line HepG2.
    Biochimica et biophysica acta, 1985, Jan-09, Volume: 833, Issue:1

    Topics: Binding Sites; Carcinoma, Hepatocellular; Cell Line; Chemical Phenomena; Chemistry; Chloroquine; Cho

1985
Studies on the binding and degradation of human very-low-density lipoproteins by human hepatoma cell line HepG2.
    Biochimica et biophysica acta, 1986, Feb-28, Volume: 875, Issue:3

    Topics: Apolipoproteins B; Apolipoproteins E; Binding, Competitive; Carcinoma, Hepatocellular; Cell Line; Ch

1986
Effects of acidotropic compounds on the secretory pathway: inhibition of secretion and processing of the third and fourth components of complement.
    Biochemical and biophysical research communications, 1986, Apr-29, Volume: 136, Issue:2

    Topics: Amantadine; Benzamidines; Carcinoma, Hepatocellular; Cell Line; Chloroquine; Complement C3; Compleme

1986
Human plasma cholesteryl ester transfer protein enhances the transfer of cholesteryl ester from high density lipoproteins into cultured HepG2 cells.
    The Journal of biological chemistry, 1987, Mar-15, Volume: 262, Issue:8

    Topics: Carcinoma, Hepatocellular; Carrier Proteins; Cell Line; Chloroquine; Cholesterol Ester Transfer Prot

1987
On the effects of weak bases and monensin on sorting and processing of lysosomal enzymes in human cells.
    European journal of cell biology, 1987, Volume: 43, Issue:3

    Topics: Ammonium Chloride; Carcinoma, Hepatocellular; Cathepsin D; Cell Line; Chloroquine; Fibroblasts; Huma

1987
[Therapy of infections with clonorchis sinensis (author's transl)].
    Medizinische Klinik, 1973, Sep-28, Volume: 68, Issue:39

    Topics: Adult; Anthelmintics; Benzenesulfonates; Carcinoma; Chloroquine; Clonorchiasis; Clonorchis sinensis;

1973
Sequential liver scanning.
    Journal of surgical oncology, 1969, Volume: 1, Issue:3

    Topics: Adult; Breast Neoplasms; Chloroquine; Colonic Neoplasms; Dactinomycin; Emetine; Estrogens; Female; F

1969