Page last updated: 2024-10-24

chloroquine and Cancer of Lung

chloroquine has been researched along with Cancer of Lung in 84 studies

Chloroquine: The prototypical antimalarial agent with a mechanism that is not well understood. It has also been used to treat rheumatoid arthritis, systemic lupus erythematosus, and in the systemic therapy of amebic liver abscesses.
chloroquine : An aminoquinoline that is quinoline which is substituted at position 4 by a [5-(diethylamino)pentan-2-yl]amino group at at position 7 by chlorine. It is used for the treatment of malaria, hepatic amoebiasis, lupus erythematosus, light-sensitive skin eruptions, and rheumatoid arthritis.

Research Excerpts

ExcerptRelevanceReference
"Urethane-induced lung carcinogenesis led to more M2 macrophage phenotype and increased abnormal angiogenesis concomitant with the upregulation of LC3-B and the downregulation of p62."5.43The M2 macrophages induce autophagic vascular disorder and promote mouse sensitivity to urethane-related lung carcinogenesis. ( Cao, N; Du, GJ; Geng, SN; Guo, ZZ; Han, G; Li, GG; Lin, HH; Ma, XF; Meng, MJ; Zheng, YQ, 2016)
"Some triple negative breast cancer (TNBC) patients are at higher risk of recurrence in the first three years after treatment."5.43Stimulation of triple negative breast cancer cell migration and metastases formation is prevented by chloroquine in a pre-irradiated mouse model. ( Bérubé-Lauzière, Y; Bouchard, G; Bujold, R; Geha, S; Paquette, B; Saucier, C; Therriault, H, 2016)
" Combined chloroquine and HDACi treatment abrogates growth of human MPNST xenografts and lung metastases."3.77Autophagy blockade enhances HDAC inhibitors' pro-apoptotic effects: potential implications for the treatment of a therapeutic-resistant malignancy. ( Lev, D; Lopez, G; Torres, K, 2011)
" Chloroquine, ergotamine, ethaverine and chronic abuse of non-narcotic analgesic drugs seem to be responsible for the drug-induced cutaneous neuro-phospholipidosis, whereas the same condition was found in two patients with metastatic bronchogenic carcinoma and malignant melanoma."3.65Tumor- and drug-induced cutaneous neuro-phospholipidosis. ( Orfanos, CE; Runne, U, 1975)
"CAFs contribute to metastasis process through direct or indirect interaction with tumor cells; however, the underlying mechanism is largely unknown."1.62Autophagic secretion of HMGB1 from cancer-associated fibroblasts promotes metastatic potential of non-small cell lung cancer cells via NFκB signaling. ( Cao, L; Chen, M; Furlong, F; Guo, X; Li, X; Meng, Z; Ren, Y; Wang, L; Wu, X; Xu, K; Zhang, Q; Zheng, S, 2021)
" These results reveal that autophagy plays an adverse role in osimertinib cytotoxicity through inducing stem cell-like properties."1.51Protective autophagy decreases osimertinib cytotoxicity through regulation of stem cell-like properties in lung cancer. ( Feng, M; He, Y; Hu, C; Jiao, L; Li, L; Lin, C; Lu, C; Wang, Y; Wu, H; Ye, J; Zhang, D; Zhang, K, 2019)
"Chloroquine (CQ) has been revealed to exhibit antitumor activity in several human tumors including lung cancer as mono‑ or add‑on therapy."1.48Chloroquine inhibits cell growth in human A549 lung cancer cells by blocking autophagy and inducing mitochondrial‑mediated apoptosis. ( Cui, H; Han, C; Liu, L; Yu, H; Yue, L; Zhang, C; Zheng, L; Zhu, W, 2018)
"Chloroquine (CQ) was used in combination with AP/ES to normalize tumor vessels for sufficient drug/gene delivery to overcome drug resistance in NSCLC cells."1.48Chloroquine in combination with aptamer-modified nanocomplexes for tumor vessel normalization and efficient erlotinib/Survivin shRNA co-delivery to overcome drug resistance in EGFR-mutated non-small cell lung cancer. ( Chen, H; Gao, Y; Li, Z; Lv, T; Xu, L; Zhang, Y, 2018)
" Besides, xenograft experiment showed that combination with autophagy inhibitor potentiated the anti-tumor efficacy of rhArg in vivo."1.46A novel and promising therapeutic approach for NSCLC: recombinant human arginase alone or combined with autophagy inhibitor. ( Cao, Z; Fan, J; Fu, X; Ju, D; Luan, J; Shen, W; Xu, Z; Yang, P; Zhang, X, 2017)
"Lung cancer is the leading cause of cancer-related deaths."1.46Modulating lysosomal function through lysosome membrane permeabilization or autophagy suppression restores sensitivity to cisplatin in refractory non-small-cell lung cancer cells. ( Barr, MP; Cardelli, J; Circu, M; El-Osta, H; Mills, G; O'Byrne, K, 2017)
"Urethane-induced lung carcinogenesis led to more M2 macrophage phenotype and increased abnormal angiogenesis concomitant with the upregulation of LC3-B and the downregulation of p62."1.43The M2 macrophages induce autophagic vascular disorder and promote mouse sensitivity to urethane-related lung carcinogenesis. ( Cao, N; Du, GJ; Geng, SN; Guo, ZZ; Han, G; Li, GG; Lin, HH; Ma, XF; Meng, MJ; Zheng, YQ, 2016)
"Some triple negative breast cancer (TNBC) patients are at higher risk of recurrence in the first three years after treatment."1.43Stimulation of triple negative breast cancer cell migration and metastases formation is prevented by chloroquine in a pre-irradiated mouse model. ( Bérubé-Lauzière, Y; Bouchard, G; Bujold, R; Geha, S; Paquette, B; Saucier, C; Therriault, H, 2016)
"Chloroquine (CQ) is a widely used antimalarial drug with emerging potential in anticancer therapies due to its apparent inhibitory effects on CXCR4 chemokine receptor, autophagy, and cholesterol metabolism."1.43Polymeric chloroquine as an inhibitor of cancer cell migration and experimental lung metastasis. ( Li, J; Oupický, D; Sleightholm, RL; Xie, Y; Yu, F, 2016)
"Quercetin treatment dose-dependently decreased the p62 protein expression and increased GFP-LC3B."1.42Quercetin-induced autophagy flux enhances TRAIL-mediated tumor cell death. ( Eo, SK; Lee, JH; Moon, JH; Park, SY, 2015)
"In addition, LY2603618-treated lung cancer cells transitioned from LC3-I to LC3-II, a hallmark of autophagy."1.40The checkpoint 1 kinase inhibitor LY2603618 induces cell cycle arrest, DNA damage response and autophagy in cancer cells. ( Cui, YJ; Fei, HR; Li, ZM; Sun, BL; Sun, YK; Wang, FZ; Wang, XY; Yang, XY; Zhang, JG, 2014)
"Chloroquine (CQ) is an antimalarial drug and late-stage inhibitor of autophagy currently FDA-approved for use in the treatment of rheumatoid arthritis and other autoimmune diseases."1.40Regulation of autophagy and chloroquine sensitivity by oncogenic RAS in vitro is context-dependent. ( Cummings, C; Gamez, G; Gidan, F; Hernandez, A; Maycotte, P; Menke, C; Morgan, MJ; Morgan, S; Staskiewicz, L; Thorburn, A; Thorburn, J, 2014)
" NVP-BEZ235 (BEZ235) is a novel, orally bioavailable dual PI3K/mTOR inhibitor that has exhibited promising activity against non-small cell lung cancer (NSCLC) in preclinical models."1.37Augmentation of NVP-BEZ235's anticancer activity against human lung cancer cells by blockage of autophagy. ( Fang, G; Khuri, FR; Owonikoko, TK; Ramalingam, SS; Sun, SY; Tao, H; Xu, CX; Yue, P; Zhao, L, 2011)
"Perifosine is an alkylphospholipid exhibiting antitumor activity as shown in both preclinical studies and clinical trials."1.35Perifosine inhibits mammalian target of rapamycin signaling through facilitating degradation of major components in the mTOR axis and induces autophagy. ( Fu, L; Khuri, FR; Kim, YA; Lonial, S; Sun, SY; Wang, X; Wu, X; Yue, P, 2009)

Research

Studies (84)

TimeframeStudies, this research(%)All Research%
pre-199013 (15.48)18.7374
1990's2 (2.38)18.2507
2000's6 (7.14)29.6817
2010's47 (55.95)24.3611
2020's16 (19.05)2.80

Authors

AuthorsStudies
Gochfeld, DJ1
Hamann, MT1
Ren, Y2
Cao, L2
Wang, L3
Zheng, S1
Zhang, Q3
Guo, X1
Li, X11
Chen, M2
Wu, X3
Furlong, F1
Meng, Z1
Xu, K1
Zhao, H3
Lu, L1
Peng, Z1
Chen, LL1
Meng, X1
Zhang, C2
Ip, JD1
Chan, WM1
Chu, AW1
Chan, KH1
Jin, DY1
Chen, H3
Yuen, KY1
To, KK1
Saini, H3
Choudhary, M3
Sharma, H3
Chowdhury, S3
Mukherjee, S4
Chowdhury, R3
Marianna, B1
Radka, M1
Martin, K1
Janka, V1
Jan, M1
Patrakova, E1
Biryukov, M1
Troitskaya, O1
Gugin, P1
Milakhina, E1
Semenov, D1
Poletaeva, J1
Ryabchikova, E1
Novak, D1
Kryachkova, N1
Polyakova, A1
Zhilnikova, M1
Zakrevsky, D1
Schweigert, I1
Koval, O1
Ali Beg, MM1
Saxena, A1
Singh, VK1
Akhter, J1
Habib, H1
Raisuddin, S1
Xiong, R1
Shao, D1
Do, S1
Chan, WK1
Nenkov, M1
Ma, Y4
Haase, D1
Zhou, Z1
Li, Y9
Petersen, I1
Lu, G1
Chen, Y6
Pan, ST1
Zhou, J1
Yang, F1
Zhou, SF1
Ren, T3
Maghsoudnia, N1
Eftekhari, RB1
Sohi, AN1
Dorkoosh, FA1
Nguépy Keubo, FR1
Mboua, PC1
Djifack Tadongfack, T1
Fokouong Tchoffo, E1
Tasson Tatang, C1
Ide Zeuna, J1
Noupoue, EM1
Tsoplifack, CB1
Folefack, GO1
Kettani, M1
Bandelier, P1
Huo, J1
Li, H4
Yu, D1
Arulsamy, N1
AlAbbad, S1
Sardot, T1
Lekashvili, O1
Decato, D1
Lelj, F1
Alexander Ross, JB1
Rosenberg, E1
Nazir, H1
Muthuswamy, N1
Louis, C1
Jose, S1
Prakash, J1
Buan, MEM1
Flox, C1
Chavan, S1
Shi, X1
Kauranen, P1
Kallio, T1
Maia, G1
Tammeveski, K1
Lymperopoulos, N1
Carcadea, E1
Veziroglu, E1
Iranzo, A1
M Kannan, A1
Arunamata, A1
Tacy, TA1
Kache, S1
Mainwaring, RD1
Ma, M1
Maeda, K1
Punn, R1
Noguchi, S1
Hahn, S3
Iwasa, Y3
Ling, J2
Voccio, JP2
Kim, Y3
Song, J3
Bascuñán, J2
Chu, Y1
Tomita, M1
Cazorla, M1
Herrera, E1
Palomeque, E1
Saud, N1
Hoplock, LB1
Lobchuk, MM1
Lemoine, J1
Henson, MA1
Unsihuay, D1
Qiu, J1
Swaroop, S1
Nagornov, KO1
Kozhinov, AN1
Tsybin, YO1
Kuang, S1
Laskin, J1
Zin, NNINM1
Mohamad, MN1
Roslan, K1
Abdul Wafi, S1
Abdul Moin, NI1
Alias, A1
Zakaria, Y1
Abu-Bakar, N1
Naveed, A1
Jilani, K1
Siddique, AB1
Akbar, M1
Riaz, M1
Mushtaq, Z1
Sikandar, M1
Ilyas, S1
Bibi, I1
Asghar, A1
Rasool, G1
Irfan, M1
Li, XY1
Zhao, S1
Fan, XH1
Chen, KP1
Hua, W1
Liu, ZM2
Xue, XD1
Zhou, B1
Zhang, S4
Xing, YL1
Chen, MA1
Sun, Y1
Neradilek, MB1
Wu, XT1
Zhang, D3
Huang, W1
Cui, Y1
Yang, QQ1
Li, HW1
Zhao, XQ1
Hossein Rashidi, B1
Tarafdari, A1
Ghazimirsaeed, ST1
Shahrokh Tehraninezhad, E1
Keikha, F1
Eslami, B1
Ghazimirsaeed, SM1
Jafarabadi, M1
Silvani, Y1
Lovita, AND1
Maharani, A1
Wiyasa, IWA1
Sujuti, H1
Ratnawati, R1
Raras, TYM1
Lemin, AS1
Rahman, MM1
Pangarah, CA1
Kiyu, A1
Zeng, C2
Du, H1
Lin, D1
Jalan, D1
Rubagumya, F1
Hopman, WM1
Vanderpuye, V1
Lopes, G1
Seruga, B1
Booth, CM1
Berry, S1
Hammad, N1
Sajo, EA1
Okunade, KS1
Olorunfemi, G1
Rabiu, KA1
Anorlu, RI1
Xu, C2
Xiang, Y1
Xu, X1
Zhou, L2
Dong, X2
Tang, S1
Gao, XC1
Wei, CH1
Zhang, RG1
Cai, Q1
He, Y2
Tong, F1
Dong, JH1
Wu, G2
Dong, XR1
Tang, X1
Tao, F1
Xiang, W1
Zhao, Y2
Jin, L1
Tao, H2
Lei, Y1
Gan, H1
Huang, Y1
Chen, L3
Shan, A1
Wu, M2
Ma, Q1
Wang, J7
Zhang, E1
Zhang, J4
Xue, F1
Deng, L1
Liu, L3
Yan, Z2
Wang, Y8
Meng, J1
Chen, G2
Anastassiadou, M1
Bernasconi, G1
Brancato, A1
Carrasco Cabrera, L1
Greco, L1
Jarrah, S1
Kazocina, A1
Leuschner, R1
Magrans, JO1
Miron, I1
Nave, S1
Pedersen, R1
Reich, H1
Rojas, A1
Sacchi, A1
Santos, M1
Theobald, A1
Vagenende, B1
Verani, A1
Du, L1
Liu, X2
Li, J9
Li, P1
Jiao, Q1
Meng, P1
Wang, F3
Wang, YS1
Wang, C3
Zhou, X2
Wang, W2
Wang, S3
Hou, J1
Zhang, A1
Lv, B1
Gao, C1
Pang, D1
Lu, K1
Ahmad, NH1
Zhu, J2
Zhang, L5
Zhuang, T1
Tu, J1
Zhao, Z1
Qu, Y1
Yao, H1
Wang, X6
Lee, DF1
Shen, J3
Wen, L1
Huang, G2
Xie, X1
Zhao, Q1
Hu, W2
Zhang, Y8
Lu, J3
Li, M1
Li, W3
Wu, W1
Du, F1
Ji, H1
Yang, X2
Xu, Z4
Wan, L1
Wen, Q1
Cho, CH1
Zou, C1
Xiao, Z1
Liao, J1
Su, X1
Bi, Z1
Su, Q2
Huang, H1
Wei, Y2
Gao, Y3
Na, KJ1
Choi, H1
Oh, HR1
Kim, YH1
Lee, SB1
Jung, YJ1
Koh, J1
Park, S1
Lee, HJ1
Jeon, YK1
Chung, DH1
Paeng, JC1
Park, IK1
Kang, CH1
Cheon, GJ1
Kang, KW1
Lee, DS1
Kim, YT1
Pajuelo-Lozano, N1
Alcalá, S1
Sainz, B1
Perona, R1
Sanchez-Perez, I1
Logotheti, S1
Marquardt, S1
Gupta, SK1
Richter, C1
Edelhäuser, BAH1
Engelmann, D1
Brenmoehl, J1
Söhnchen, C1
Murr, N1
Alpers, M1
Singh, KP1
Wolkenhauer, O1
Heckl, D1
Spitschak, A1
Pützer, BM1
Liao, Y1
Cheng, J2
Kong, X1
Li, S2
Zhang, M5
Zhang, H1
Yang, T3
Dong, Y1
Xu, Y1
Yuan, Z1
Cao, J1
Zheng, Y1
Luo, Z1
Mei, Z1
Yao, Y1
Liu, Z4
Liang, C1
Yang, H1
Song, Y1
Yu, K1
Zhu, C1
Huang, Z1
Qian, J1
Ge, J1
Hu, J2
Wang, H3
Liu, Y4
Mi, Y1
Kong, H1
Xi, D1
Yan, W1
Luo, X1
Ning, Q1
Chang, X2
Zhang, T2
Wang, Q2
Rathore, MG1
Reddy, K1
Shin, SH1
Ma, WY1
Bode, AM1
Dong, Z1
Mu, W1
Liu, C3
Gao, F1
Qi, Y1
Lu, H1
Zhang, X7
Cai, X1
Ji, RY1
Hou, Y3
Tian, J2
Shi, Y1
Ying, S1
Tan, M1
Feng, G1
Kuang, Y1
Chen, D1
Wu, D3
Zhu, ZQ1
Tang, HX1
Shi, ZE1
Kang, J1
Liu, Q2
Qi, J2
Mu, J1
Cong, Z1
Chen, S2
Fu, D1
Li, Z4
Celestrin, CP1
Rocha, GZ1
Stein, AM1
Guadagnini, D1
Tadelle, RM1
Saad, MJA1
Oliveira, AG1
Bianconi, V1
Bronzo, P1
Banach, M1
Sahebkar, A1
Mannarino, MR1
Pirro, M1
Patsourakos, NG1
Kouvari, M1
Kotidis, A1
Kalantzi, KI1
Tsoumani, ME1
Anastasiadis, F1
Andronikos, P1
Aslanidou, T1
Efraimidis, P1
Georgiopoulos, A1
Gerakiou, K1
Grigoriadou-Skouta, E1
Grigoropoulos, P1
Hatzopoulos, D1
Kartalis, A1
Lyras, A1
Markatos, G1
Mikrogeorgiou, A1
Myroforou, I1
Orkopoulos, A1
Pavlidis, P1
Petras, C1
Riga, M1
Skouloudi, M1
Smyrnioudis, N1
Thomaidis, K1
Tsikouri, GE1
Tsikouris, EI1
Zisimos, K1
Vavoulis, P1
Vitali, MG1
Vitsas, G1
Vogiatzidis, C1
Chantanis, S1
Fousas, S1
Panagiotakos, DB1
Tselepis, AD1
Jungen, C1
Alken, FA1
Eickholt, C1
Scherschel, K1
Kuklik, P1
Klatt, N1
Schwarzl, J1
Moser, J1
Jularic, M1
Akbulak, RO1
Schaeffer, B1
Willems, S1
Meyer, C1
Nowak, JK1
Szczepanik, M1
Trypuć, M1
Pogorzelski, A1
Bobkowski, W1
Grytczuk, M1
Minarowska, A1
Wójciak, R1
Walkowiak, J1
Lu, Y1
Xi, J1
Li, C1
Chen, W3
Hu, X1
Zhang, F1
Wei, H1
Wang, Z5
Gurzu, S1
Jung, I1
Sugimura, H2
Stefan-van Staden, RI1
Yamada, H1
Natsume, H1
Iwashita, Y1
Szodorai, R1
Szederjesi, J1
Yari, D1
Ehsanbakhsh, Z1
Validad, MH1
Langroudi, FH1
Esfandiari, H1
Prager, A1
Hassanpour, K1
Kurup, SP1
Mets-Halgrimson, R1
Yoon, H1
Zeid, JL1
Mets, MB1
Rahmani, B1
Araujo-Castillo, RV1
Culquichicón, C1
Solis Condor, R1
Efendi, F1
Sebayang, SK1
Astutik, E1
Hadisuyatmana, S1
Has, EMM1
Kuswanto, H1
Foroutan, T1
Ahmadi, F1
Moayer, F1
Khalvati, S1
Lyu, Y1
Huang, J1
Yu, N1
Wen, Z1
Hou, H1
Zhao, T1
Gupta, A1
Khosla, N1
Govindasamy, V1
Saini, A1
Annapurna, K1
Dhakate, SR1
Akkaya, Ö1
Chandgude, AL1
Dömling, A1
Harnett, J1
Oakes, K1
Carè, J1
Leach, M1
Brown, D1
Cramer, H1
Pinder, TA1
Steel, A1
Anheyer, D1
Cantu, J1
Valle, J1
Flores, K1
Gonzalez, D1
Valdes, C1
Lopez, J1
Padilla, V1
Alcoutlabi, M1
Parsons, J1
Núñez, K1
Hamed, M1
Fort, D1
Bruce, D1
Thevenot, P1
Cohen, A1
Weber, P1
Menezes, AMB1
Gonçalves, H1
Perez-Padilla, R1
Jarvis, D1
de Oliveira, PD1
Wehrmeister, FC1
Mir, S1
Wong, J1
Ryan, CM1
Bellingham, G1
Singh, M2
Waseem, R1
Eckert, DJ1
Chung, F1
Hegde, H1
Shimpi, N1
Panny, A1
Glurich, I1
Christie, P1
Acharya, A1
English, KL1
Downs, M1
Goetchius, E1
Buxton, R1
Ryder, JW1
Ploutz-Snyder, R1
Guilliams, M1
Scott, JM1
Ploutz-Snyder, LL1
Martens, C1
Goplen, FK1
Aasen, T1
Gjestad, R1
Nordfalk, KF1
Nordahl, SHG1
Inoue, T1
Soshi, S1
Kubota, M1
Marumo, K1
Mortensen, NP1
Caffaro, MM1
Patel, PR2
Uddin, MJ1
Aravamudhan, S1
Sumner, SJ1
Fennell, TR1
Gal, RL1
Cohen, NJ1
Kruger, D1
Beck, RW1
Bergenstal, RM1
Calhoun, P1
Cushman, T1
Haban, A1
Hood, K1
Johnson, ML1
McArthur, T1
Olson, BA1
Weinstock, RS1
Oser, SM1
Oser, TK1
Bugielski, B1
Strayer, H1
Aleppo, G1
Maruyama, H1
Hirayama, K1
Yamashita, M1
Ohgi, K1
Tsujimoto, R1
Takayasu, M1
Shimohata, H1
Kobayashi, M1
Buscagan, TM1
Rees, DC1
Jaborek, JR1
Zerby, HN1
Wick, MP1
Fluharty, FL1
Moeller, SJ1
Razavi, P1
Dickler, MN1
Shah, PD1
Toy, W1
Brown, DN1
Won, HH1
Li, BT1
Shen, R1
Vasan, N1
Modi, S1
Jhaveri, K1
Caravella, BA1
Patil, S1
Selenica, P1
Zamora, S1
Cowan, AM1
Comen, E1
Singh, A1
Covey, A1
Berger, MF1
Hudis, CA1
Norton, L1
Nagy, RJ1
Odegaard, JI1
Lanman, RB1
Solit, DB1
Robson, ME1
Lacouture, ME1
Brogi, E1
Reis-Filho, JS1
Moynahan, ME1
Scaltriti, M1
Chandarlapaty, S1
Papouskova, K1
Moravcova, M1
Masrati, G1
Ben-Tal, N1
Sychrova, H1
Zimmermannova, O1
Fang, J1
Fan, Y1
Luo, T2
Su, H1
Tsetseris, L1
Anthopoulos, TD1
Liu, SF1
Zhao, K1
Sacan, O1
Turkyilmaz, IB1
Bayrak, BB1
Mutlu, O1
Akev, N1
Yanardag, R1
Gruber, S1
Kamnoedboon, P1
Özcan, M1
Srinivasan, M1
Jo, YH1
Oh, HK1
Jeong, SY1
Lee, BG1
Zheng, J1
Guan, H1
Li, D2
Tan, H1
Maji, TK1
J R, A1
Alexander, R1
Mondal, A1
Das, S1
Sharma, RK1
Chakraborty, NK1
Dasgupta, K1
Sharma, AMR1
Hawaldar, R1
Pandey, M1
Naik, A1
Majumdar, K1
Pal, SK1
Adarsh, KV1
Ray, SK1
Karmakar, D1
Gao, W2
Ma, S1
Lin, W1
Zhou, T1
Wu, T1
Wu, Q1
Ye, C1
He, X2
Jiang, F1
Yuan, D1
Chen, Q2
Hong, M1
Chen, K1
Hussain, M1
Razi, SS1
Yildiz, EA1
Zhao, J2
Yaglioglu, HG1
Donato, MD1
Jiang, J1
Jamil, MI1
Zhan, X1
Chen, F1
Cheng, D1
Wu, CT1
Utsunomiya, T1
Ichii, T1
Fujinami, S1
Nakajima, K1
Sanchez, DM1
Raucci, U1
Ferreras, KN1
Martínez, TJ1
Mordi, NA1
Mordi, IR1
Singh, JS1
McCrimmon, RJ1
Struthers, AD1
Lang, CC1
Wang, XW1
Yuan, LJ1
Yang, Y1
Chen, WF1
Luo, R1
Yang, K1
Amarasiri, SS1
Attanayake, AP1
Arawwawala, LDAM1
Jayatilaka, KAPW1
Mudduwa, LKB1
Ogunsuyi, O2
Akanni, O1
Alabi, O1
Alimba, C1
Adaramoye, O1
Cambier, S1
Eswara, S1
Gutleb, AC1
Bakare, A1
Gu, Z1
Cong, J1
Pellegrini, M1
Palmieri, S1
Ricci, A1
Serio, A1
Paparella, A1
Lo Sterzo, C1
Jadeja, SD1
Vaishnav, J1
Mansuri, MS1
Shah, C1
Mayatra, JM1
Shah, A1
Begum, R1
Song, H2
Lian, Y1
Wan, T1
Schultz-Lebahn, A1
Skipper, MT1
Hvas, AM1
Larsen, OH1
Hijazi, Z1
Granger, CB1
Hohnloser, SH1
Westerbergh, J1
Lindbäck, J1
Alexander, JH1
Keltai, M1
Parkhomenko, A1
López-Sendón, JL1
Lopes, RD1
Siegbahn, A1
Wallentin, L1
El-Tarabany, MS1
Saleh, AA1
El-Araby, IE1
El-Magd, MA1
van Ginkel, MPH1
Schijven, MP1
van Grevenstein, WMU1
Schreuder, HWR1
Pereira, EDM1
da Silva, J1
Carvalho, PDS1
Grivicich, I1
Picada, JN1
Salgado Júnior, IB1
Vasques, GJ1
Pereira, MADS1
Reginatto, FH1
Ferraz, ABF1
Vasilenko, EA1
Gorshkova, EN1
Astrakhantseva, IV1
Drutskaya, MS1
Tillib, SV1
Nedospasov, SA1
Mokhonov, VV1
Nam, YW1
Cui, M1
Orfali, R1
Viegas, A1
Nguyen, M1
Mohammed, EHM1
Zoghebi, KA1
Rahighi, S1
Parang, K1
Patterson, KC1
Kahanovitch, U1
Gonçalves, CM1
Hablitz, JJ1
Staruschenko, A1
Mulkey, DK1
Olsen, ML1
Gu, L1
Cao, X1
Mukhtar, A1
Wu, K1
Zhang, YY1
Zhu, Y1
Lu, DZ1
Dong, W1
Bi, WJ1
Feng, XJ1
Wen, LM1
Sun, H1
Qi, MC1
Chang, CC1
Dinh, TK1
Lee, YA1
Wang, FN1
Sung, YC1
Yu, PL1
Chiu, SC1
Shih, YC1
Wu, CY1
Huang, YD1
Lu, TT1
Wan, D1
Sakizadeh, J1
Cline, JP1
Snyder, MA1
Kiely, CJ1
McIntosh, S1
Jiang, X1
Cao, JW1
Zhao, CK1
Yang, R1
Zhang, QY1
Chen, KJ2
Liu, H2
He, Z1
Chen, B1
Wu, J1
Du, X1
Moore, J1
Blank, BR1
Eksterowicz, J1
Sutimantanapi, D1
Yuen, N1
Metzger, T1
Chan, B1
Huang, T1
Chen, X3
Duong, F1
Kong, W1
Chang, JH1
Sun, J1
Zavorotinskaya, T1
Ye, Q1
Junttila, MR1
Ndubaku, C1
Friedman, LS1
Fantin, VR1
Sun, D1
Fei, P1
Xie, Q1
Jiang, Y2
Feng, H1
Chang, Y1
Kang, H1
Xing, M1
Chen, J1
Shao, Z1
Yuan, C1
Wu, Y1
Allan, R1
Canham, K1
Wallace, R1
Singh, D1
Ward, J1
Cooper, A1
Newcomb, C1
Nammour, S1
El Mobadder, M1
Maalouf, E1
Namour, M1
Namour, A1
Rey, G1
Matamba, P1
Matys, J1
Zeinoun, T1
Grzech-Leśniak, K1
Segabinazi Peserico, C1
Garozi, L1
Zagatto, AM1
Machado, FA1
Hirth, JM1
Dinehart, EE1
Lin, YL1
Kuo, YF1
Nouri, SS1
Ritchie, C1
Volow, A1
Li, B3
McSpadden, S1
Dearman, K1
Kotwal, A1
Sudore, RL1
Ward, L1
Thakur, A2
Kondadasula, SV1
Ji, K1
Schalk, DL1
Bliemeister, E1
Ung, J1
Aboukameel, A1
Casarez, E1
Sloane, BF1
Lum, LG1
Xiao, M1
Feng, X1
Gao, R2
Du, B1
Brooks, T1
Zwirner, J1
Hammer, N1
Ondruschka, B1
Jermy, M1
Luengo, A1
Marzo, I1
Reback, M1
Daubit, IM1
Fernández-Moreira, V1
Metzler-Nolte, N1
Gimeno, MC1
Tonchev, I1
Heberman, D1
Peretz, A1
Medvedovsky, AT1
Gotsman, I1
Rashi, Y1
Poles, L1
Goland, S1
Perlman, GY1
Danenberg, HD1
Beeri, R1
Shuvy, M1
Fu, Q1
Yang, D1
Sarapulova, A1
Pang, Q1
Meng, Y1
Wei, L1
Ehrenberg, H1
Kim, CC1
Jeong, SH1
Oh, KH1
Nam, KT1
Sun, JY1
Ning, J1
Duan, Z1
Kershaw, SV1
Rogach, AL1
Gao, Z1
Wang, T2
Li, Q1
Cao, T1
Guo, L1
Fu, Y1
Seeger, ZL1
Izgorodina, EI1
Hue, S1
Beldi-Ferchiou, A1
Bendib, I1
Surenaud, M1
Fourati, S1
Frapard, T1
Rivoal, S1
Razazi, K1
Carteaux, G1
Delfau-Larue, MH1
Mekontso-Dessap, A1
Audureau, E1
de Prost, N1
Gao, SS1
Duangthip, D1
Lo, ECM1
Chu, CH1
Roberts, W1
Rosenheck, RA1
Miyake, T1
Kimoto, E1
Luo, L1
Mathialagan, S1
Horlbogen, LM1
Ramanathan, R1
Wood, LS1
Johnson, JG1
Le, VH1
Vourvahis, M1
Rodrigues, AD1
Muto, C1
Furihata, K1
Sugiyama, Y1
Kusuhara, H1
Gong, Q1
Song, W1
Sun, B1
Cao, P1
Gu, S1
Sun, X1
Zhou, G2
Toma, C1
Khandhar, S1
Zalewski, AM1
D'Auria, SJ1
Tu, TM1
Jaber, WA1
Cho, J2
Suwandaratne, NS1
Razek, S1
Choi, YH1
Piper, LFJ1
Watson, DF1
Banerjee, S1
Xie, S1
Lindsay, AP1
Bates, FS1
Lodge, TP1
Hao, Y1
Chapovetsky, A1
Liu, JJ2
Welborn, M1
Luna, JM1
Do, T1
Haiges, R1
Miller Iii, TF1
Marinescu, SC1
Lopez, SA1
Compter, I1
Eekers, DBP1
Hoeben, A1
Rouschop, KMA1
Reymen, B1
Ackermans, L1
Beckervordersantforth, J1
Bauer, NJC1
Anten, MM1
Wesseling, P1
Postma, AA1
De Ruysscher, D1
Lambin, P1
Qiang, L1
Yang, S1
Cui, YH1
He, YY1
Kumar, SK1
Jacobus, SJ1
Cohen, AD1
Weiss, M1
Callander, N1
Singh, AK1
Parker, TL1
Menter, A1
Parsons, B1
Kumar, P1
Kapoor, P1
Rosenberg, A1
Zonder, JA1
Faber, E1
Lonial, S2
Anderson, KC1
Richardson, PG1
Orlowski, RZ1
Wagner, LI1
Rajkumar, SV1
Li, G1
Hou, G1
Cui, J1
Xie, H1
Sun, Z1
Fang, Z1
Dunstand-Guzmán, E1
Hallal-Calleros, C1
Hernández-Velázquez, VM1
Canales-Vargas, EJ1
Domínguez-Roldan, R1
Pedernera, M1
Peña-Chora, G1
Flores-Pérez, I1
Kim, MJ1
Han, C2
White, K1
Park, HJ1
Ding, D1
Boyd, K1
Rothenberger, C1
Bose, U1
Carmichael, P1
Linser, PJ1
Tanokura, M1
Salvi, R1
Someya, S1
Samuni, A1
Goldstein, S1
Divya, KP1
Dharuman, V1
Feng, J3
Qian, Y1
Cheng, Q1
Ma, H1
Ren, X2
Wei, Q1
Pan, W1
Guo, J2
Situ, B1
An, T1
Zheng, L2
Augusto, S1
Ratola, N1
Tarín-Carrasco, P1
Jiménez-Guerrero, P1
Turco, M1
Schuhmacher, M1
Costa, S1
Teixeira, JP1
Costa, C1
Syed, A1
Marraiki, N1
Al-Rashed, S1
Elgorban, AM1
Yassin, MT1
Chankhanittha, T1
Nanan, S1
Sorokina, KN1
Samoylova, YV1
Gromov, NV1
Ogorodnikova, OL1
Parmon, VN1
Ye, J2
Liao, W1
Zhang, P1
Nabi, M1
Cai, Y1
Li, F1
Alsbou, EM1
Omari, KW1
Adeosun, WA1
Asiri, AM1
Marwani, HM1
Barral, M1
Jemal-Turki, A1
Beuvon, F1
Soyer, P1
Camparo, P1
Cornud, F1
Atwater, BD1
Jones, WS1
Loring, Z1
Friedman, DJ1
Namburath, M1
Papirio, S1
Moscariello, C1
Di Costanzo, N1
Pirozzi, F1
Alappat, BJ1
Sreekrishnan, TR1
Volpin, F1
Woo, YC1
Kim, H1
Freguia, S1
Jeong, N1
Choi, JS1
Phuntsho, S1
Shon, HK1
Domínguez-Zambrano, E1
Pedraza-Chaverri, J1
López-Santos, AL1
Medina-Campos, ON1
Cruz-Rivera, C1
Bueno-Hernández, F1
Espinosa-Cuevas, A1
Bulavaitė, A1
Dalgediene, I1
Michailoviene, V1
Pleckaityte, M1
Sauerbier, P1
Köhler, R1
Renner, G1
Militz, H1
Wang, M2
Yu, H3
Wu, R1
Chen, ZY1
Hu, Q1
Zhang, YF1
Gao, SH1
Zhou, GB1
Kovalenko, A1
Sanin, A1
Kosmas, K1
Akl, EW1
Giannikou, K1
Probst, CK1
Hougard, TR1
Rue, RW1
Krymskaya, VP1
Asara, JM1
Lam, HC1
Kwiatkowski, DJ1
Henske, EP1
Filippakis, H1
Zheng, Z1
Deng, H1
Zinnah, KMA1
Park, SY2
Lypova, N1
Dougherty, SM1
Lanceta, L1
Chesney, J1
Imbert-Fernandez, Y1
Fan, J2
Luan, J2
Song, P1
Tian, W1
Ju, D2
Shen, W1
Fu, X1
Cao, Z1
Yang, P1
Zhang, G2
Circu, M1
Cardelli, J1
Barr, MP1
O'Byrne, K1
Mills, G1
El-Osta, H1
Cheng, K1
Sonoki, H1
Tanimae, A1
Furuta, T1
Endo, S1
Matsunaga, T1
Ichihara, K1
Ikari, A1
Zhu, W1
Cui, H1
Yue, L1
Lv, T1
Xu, L3
Morgan, MJ2
Fitzwalter, BE1
Owens, CR1
Powers, RK1
Sottnik, JL1
Gamez, G2
Costello, JC1
Theodorescu, D1
Thorburn, A2
Zhang, Z2
Yin, W1
Sironi, J2
Aranda, E1
Nordstrøm, LU1
Schwartz, EL2
Guo, Z1
Pei, H1
Nie, J1
Ding, J1
Pan, S1
Hei, TK1
Li, L1
Jiao, L1
Lin, C1
Lu, C1
Zhang, K1
Hu, C1
Wu, H2
Feng, M1
Alvur, O1
Tokgun, O1
Baygu, Y1
Kabay, N1
Gok, Y1
Akca, H1
Zinn, RL1
Gardner, EE1
Dobromilskaya, I1
Murphy, S1
Marchionni, L1
Hann, CL1
Rudin, CM1
Zou, Y1
Ling, YH1
Perez-Soler, R1
Piperdi, B1
Yin, Q1
Hong, SK1
Kim, JH1
Starenki, D1
Park, JI1
Ji, C1
Cheng, Y1
Patel, R1
Ji, S1
Belani, CP1
Yang, JM1
Liu, F2
Shang, Y1
Chen, SZ1
Wang, FZ1
Fei, HR1
Cui, YJ1
Sun, YK1
Li, ZM1
Wang, XY1
Yang, XY1
Zhang, JG1
Sun, BL1
Bokobza, SM1
Weber, AM1
Devery, AM1
Ryan, AJ1
Jiang, K1
Zhu, Q1
Xu, J1
Deng, W1
Meng, S1
Menke, C1
Hernandez, A1
Thorburn, J1
Gidan, F1
Staskiewicz, L1
Morgan, S1
Cummings, C1
Maycotte, P1
Ragusa, S1
Ivanov, KI1
Zangger, N1
Ceteci, F1
Bernier-Latmani, J1
Milatos, S1
Joseph, JM1
Tercier, S1
Bouzourene, H1
Bosman, FT1
Letovanec, I1
Marra, G1
Gonzalez, M1
Cammareri, P1
Sansom, OJ1
Delorenzi, M1
Petrova, TV1
Mei, L1
Wan, J1
Yu, C1
Tang, MC1
Wu, MY1
Hwang, MH1
Chang, YT1
Huang, HJ1
Lin, AM1
Yang, JC1
Liu, JT1
Li, WC1
Gao, S1
Li, XQ1
Yu, HQ1
Fan, LL1
Wei, W1
Sun, GP1
Moon, JH1
Eo, SK1
Lee, JH1
Colina-Vegas, L1
Villarreal, W1
Navarro, M1
de Oliveira, CR1
Graminha, AE1
Maia, PIDS1
Deflon, VM1
Ferreira, AG1
Cominetti, MR1
Batista, AA1
Chaachouay, H1
Fehrenbacher, B1
Toulany, M1
Schaller, M1
Multhoff, G1
Rodemann, HP1
Salas, E1
Roy, S1
Marsh, T1
Rubin, B1
Debnath, J1
Li, GG1
Guo, ZZ1
Ma, XF1
Cao, N1
Geng, SN1
Zheng, YQ1
Meng, MJ1
Lin, HH1
Han, G1
Du, GJ1
Shi, S1
Tan, P1
Yan, B1
Li, N1
Ma, Z1
Keta, O1
Bulat, T1
Golić, I1
Incerti, S1
Korać, A1
Petrović, I1
Ristić-Fira, A1
Du, T1
Zhang, R1
Ma, G1
Luo, W1
Ma, DL1
Leung, CH1
Man, S1
Liu, J1
Yu, P1
Bouchard, G1
Therriault, H1
Geha, S1
Bérubé-Lauzière, Y1
Bujold, R1
Saucier, C1
Paquette, B1
Yu, F1
Xie, Y1
Sleightholm, RL1
Oupický, D1
Xie, WY1
Zhou, XD1
Yang, J1
Chen, LX1
Ran, DH1
Ren, H1
Guo, H1
Liang, Y1
Shi, P1
Gao, L1
Chen, T1
Shang, D1
Xu, F1
Zarogoulidis, P1
Petanidis, S1
Domvri, K1
Kioseoglou, E1
Anestakis, D1
Freitag, L1
Zarogoulidis, K1
Hohenforst-Schmidt, W1
Eberhardt, W1
Wen, ZK1
Qian, C1
Liang, YJ2
Jin, ML2
Cai, YY2
Guo, ZL1
Tao, MF1
Fu, L1
Kim, YA1
Yue, P2
Khuri, FR2
Sun, SY2
Lopez, G1
Torres, K1
Lev, D1
Xu, CX1
Zhao, L1
Fang, G1
Owonikoko, TK1
Ramalingam, SS1
Peng, RQ1
Li, DD1
Ding, Y1
Wu, XQ1
Zeng, YX1
Zhu, XF1
Zhang, XS1
Enzenmüller, S1
Gonzalez, P1
Debatin, KM1
Fulda, S1
HIRAKI, K1
KIMURA, I2
GAMBARDELLA, A1
DEMICHELE, D1
FINELLI, L1
Fan, C1
Zhao, B1
Miao, J1
Giraldi, T1
Sava, G1
Kopitar, M1
Brzin, J1
Turk, V1
Jensen, PB1
Sørensen, BS1
Sehested, M1
Grue, P1
Demant, EJ1
Hansen, HH1
Pazmiño, NH1
Yuhas, JM1
Austin Taylor, M1
Bennett, M1
Kumar, V1
Schatzle, JD1
Orfanos, CE1
Runne, U1
Wurm, K1
Cardona, C1
Bleehen, NM1
Reeve, JG1
Sorenson, GD1
Cate, CC1
Pettengill, OS1
Roth, JA1
Ames, RS1
Fry, K1
Lee, HM1
Scannon, PJ1
Burkhard, W1
Fritz-Niggli, H1
Niitani, H1
Krauze, J1
Boyd, CM1
Lieberman, LM1
Beierwaltes, WH1
Varma, VM1
Moritani, Y1
Onoshi, T1
Takata, H1
Kunimasa, I1

Reviews

3 reviews available for chloroquine and Cancer of Lung

ArticleYear
Psychological distress among health care professionals of the three COVID-19 most affected Regions in Cameroon: Prevalence and associated factors.
    Annales medico-psychologiques, 2021, Volume: 179, Issue:2

    Topics: 3' Untranslated Regions; 5'-Nucleotidase; A549 Cells; Accidental Falls; Acetylcholinesterase; Acryli

2021
Inhibition of autophagy enhances heat-induced apoptosis in human non-small cell lung cancer cells through ER stress pathways.
    Archives of biochemistry and biophysics, 2016, 10-01, Volume: 607

    Topics: A549 Cells; Adenine; Animals; Apoptosis; Autophagy; Beclin-1; Carcinoma, Non-Small-Cell Lung; Cell L

2016
[Sarcoidosis therapy and its problems today].
    Deutsche medizinische Wochenschrift (1946), 1978, Feb-24, Volume: 103, Issue:8

    Topics: Adrenal Cortex Hormones; Adrenocorticotropic Hormone; Adult; Anti-Inflammatory Agents; Antineoplasti

1978

Trials

2 trials available for chloroquine and Cancer of Lung

ArticleYear
Psychological distress among health care professionals of the three COVID-19 most affected Regions in Cameroon: Prevalence and associated factors.
    Annales medico-psychologiques, 2021, Volume: 179, Issue:2

    Topics: 3' Untranslated Regions; 5'-Nucleotidase; A549 Cells; Accidental Falls; Acetylcholinesterase; Acryli

2021
Diagnostic efficacy of a radioiodinated chloroquine analog in patients with malignant melanoma.
    Journal of nuclear medicine : official publication, Society of Nuclear Medicine, 1970, Volume: 11, Issue:8

    Topics: Brain Neoplasms; Chloroquine; Clinical Trials as Topic; Eye Neoplasms; Humans; Iodine Radioisotopes;

1970

Other Studies

80 other studies available for chloroquine and Cancer of Lung

ArticleYear
Isolation and biological evaluation of filiformin, plakortide F, and plakortone G from the Caribbean sponge Plakortis sp.
    Journal of natural products, 2001, Volume: 64, Issue:11

    Topics: Animals; Antimalarials; Bromobenzenes; Chromatography, High Pressure Liquid; Colonic Neoplasms; Diox

2001
Autophagic secretion of HMGB1 from cancer-associated fibroblasts promotes metastatic potential of non-small cell lung cancer cells via NFκB signaling.
    Cell death & disease, 2021, 09-22, Volume: 12, Issue:10

    Topics: Adenine; Autophagy; Autophagy-Related Protein 5; Cancer-Associated Fibroblasts; Carcinoma, Non-Small

2021
SARS-CoV-2 Omicron variant shows less efficient replication and fusion activity when compared with Delta variant in TMPRSS2-expressed cells.
    Emerging microbes & infections, 2022, Volume: 11, Issue:1

    Topics: Animals; Carcinoma, Non-Small-Cell Lung; Cell Line, Tumor; Chlorocebus aethiops; Chloroquine; COVID-

2022
Chloroquine induces transitory attenuation of proliferation of human lung cancer cells through regulation of mutant P53 and YAP.
    Molecular biology reports, 2023, Volume: 50, Issue:2

    Topics: Carcinogenesis; Carcinoma, Non-Small-Cell Lung; Cell Line, Tumor; Cell Proliferation; Cell Transform

2023
Chloroquine induces transitory attenuation of proliferation of human lung cancer cells through regulation of mutant P53 and YAP.
    Molecular biology reports, 2023, Volume: 50, Issue:2

    Topics: Carcinogenesis; Carcinoma, Non-Small-Cell Lung; Cell Line, Tumor; Cell Proliferation; Cell Transform

2023
Chloroquine induces transitory attenuation of proliferation of human lung cancer cells through regulation of mutant P53 and YAP.
    Molecular biology reports, 2023, Volume: 50, Issue:2

    Topics: Carcinogenesis; Carcinoma, Non-Small-Cell Lung; Cell Line, Tumor; Cell Proliferation; Cell Transform

2023
Chloroquine induces transitory attenuation of proliferation of human lung cancer cells through regulation of mutant P53 and YAP.
    Molecular biology reports, 2023, Volume: 50, Issue:2

    Topics: Carcinogenesis; Carcinoma, Non-Small-Cell Lung; Cell Line, Tumor; Cell Proliferation; Cell Transform

2023
Chloroquine induces transitory attenuation of proliferation of human lung cancer cells through regulation of mutant P53 and YAP.
    Molecular biology reports, 2023, Volume: 50, Issue:2

    Topics: Carcinogenesis; Carcinoma, Non-Small-Cell Lung; Cell Line, Tumor; Cell Proliferation; Cell Transform

2023
Chloroquine induces transitory attenuation of proliferation of human lung cancer cells through regulation of mutant P53 and YAP.
    Molecular biology reports, 2023, Volume: 50, Issue:2

    Topics: Carcinogenesis; Carcinoma, Non-Small-Cell Lung; Cell Line, Tumor; Cell Proliferation; Cell Transform

2023
Chloroquine induces transitory attenuation of proliferation of human lung cancer cells through regulation of mutant P53 and YAP.
    Molecular biology reports, 2023, Volume: 50, Issue:2

    Topics: Carcinogenesis; Carcinoma, Non-Small-Cell Lung; Cell Line, Tumor; Cell Proliferation; Cell Transform

2023
Chloroquine induces transitory attenuation of proliferation of human lung cancer cells through regulation of mutant P53 and YAP.
    Molecular biology reports, 2023, Volume: 50, Issue:2

    Topics: Carcinogenesis; Carcinoma, Non-Small-Cell Lung; Cell Line, Tumor; Cell Proliferation; Cell Transform

2023
Chloroquine induces transitory attenuation of proliferation of human lung cancer cells through regulation of mutant P53 and YAP.
    Molecular biology reports, 2023, Volume: 50, Issue:2

    Topics: Carcinogenesis; Carcinoma, Non-Small-Cell Lung; Cell Line, Tumor; Cell Proliferation; Cell Transform

2023
Design, Synthesis and Antiproliferative Evaluation of Bis-Indole Derivatives with a Phenyl Linker: Focus on Autophagy.
    Molecules (Basel, Switzerland), 2022, Dec-28, Volume: 28, Issue:1

    Topics: Antineoplastic Agents; Apoptosis; Autophagy; Cell Line, Tumor; Cell Proliferation; Chloroquine; Huma

2022
Chloroquine Enhances Death in Lung Adenocarcinoma A549 Cells Exposed to Cold Atmospheric Plasma Jet.
    Cells, 2023, 01-12, Volume: 12, Issue:2

    Topics: A549 Cells; Adenocarcinoma of Lung; Apoptosis; Chloroquine; Humans; Lung Neoplasms; Plasma Gases

2023
Modulatory role of BV6 and chloroquine on the regulation of apoptosis and autophagy in non-small cell lung cancer cells.
    Journal of cancer research and therapeutics, 2023, Volume: 19, Issue:Supplement

    Topics: Apoptosis; Autophagy; Carcinoma, Non-Small-Cell Lung; Caspase 3; Caspase 9; Caspases; Cell Line, Tum

2023
Activation of Chaperone-Mediated Autophagy Inhibits the Aryl Hydrocarbon Receptor Function by Degrading This Receptor in Human Lung Epithelial Carcinoma A549 Cells.
    International journal of molecular sciences, 2023, Oct-12, Volume: 24, Issue:20

    Topics: A549 Cells; Autophagy; Carcinoma; Chaperone-Mediated Autophagy; Chloroquine; Humans; Ligands; Lung;

2023
Growth inhibitory role of the p53 activator SCH 529074 in non‑small cell lung cancer cells expressing mutant p53.
    Oncology reports, 2020, Volume: 43, Issue:6

    Topics: A549 Cells; Carcinoma, Non-Small-Cell Lung; Cell Line, Tumor; Cell Proliferation; Cell Survival; Chl

2020
Proteomics reveals a therapeutic vulnerability via the combined blockade of APE1 and autophagy in lung cancer A549 cells.
    BMC cancer, 2020, Jul-08, Volume: 20, Issue:1

    Topics: A549 Cells; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Autophagy; Cell Proliferation

2020
Chloroquine Assisted Delivery of microRNA Mimic Let-7b to NSCLC Cell Line by PAMAM (G5) - HA Nano-Carrier.
    Current drug delivery, 2021, Volume: 18, Issue:1

    Topics: Carcinoma, Non-Small-Cell Lung; Cell Line, Tumor; Chloroquine; Dendrimers; Humans; Hyaluronic Acid;

2021
Autophagy inhibition enhances the inhibitory effects of ursolic acid on lung cancer cells.
    International journal of molecular medicine, 2020, Volume: 46, Issue:5

    Topics: A549 Cells; Animals; Apoptosis; Autophagy; Autophagy-Related Protein 5; Carcinoma, Non-Small-Cell Lu

2020
Therapeutic Targeting of DGKA-Mediated Macropinocytosis Leads to Phospholipid Reprogramming in Tuberous Sclerosis Complex.
    Cancer research, 2021, 04-15, Volume: 81, Issue:8

    Topics: Angiolipoma; Animals; Autophagy; Cell Proliferation; Chloroquine; Diacylglycerol Kinase; Down-Regula

2021
Chinese herbal medicine Feiyanning cooperates with cisplatin to enhance cytotoxicity to non-small-cell lung cancer by inhibiting protective autophagy.
    Journal of ethnopharmacology, 2021, Aug-10, Volume: 276

    Topics: A549 Cells; Antineoplastic Agents; Apoptosis; Autophagy; Carcinoma, Non-Small-Cell Lung; Cell Prolif

2021
Sensitizing TRAIL‑resistant A549 lung cancer cells and enhancing TRAIL‑induced apoptosis with the antidepressant amitriptyline.
    Oncology reports, 2021, Volume: 46, Issue:1

    Topics: A549 Cells; Amitriptyline; Autophagy; Cell Line, Tumor; Cell Proliferation; Cell Survival; Chloroqui

2021
PFKFB3 Inhibition Impairs Erlotinib-Induced Autophagy in NSCLCs.
    Cells, 2021, 07-03, Volume: 10, Issue:7

    Topics: Adenylate Kinase; Autophagosomes; Autophagy; Carcinoma, Non-Small-Cell Lung; Cell Death; Cell Line,

2021
Targeting CD47 and Autophagy Elicited Enhanced Antitumor Effects in Non-Small Cell Lung Cancer.
    Cancer immunology research, 2017, Volume: 5, Issue:5

    Topics: Animals; Antineoplastic Agents, Immunological; Autophagy; Carcinoma, Non-Small-Cell Lung; CD47 Antig

2017
A novel and promising therapeutic approach for NSCLC: recombinant human arginase alone or combined with autophagy inhibitor.
    Cell death & disease, 2017, 03-30, Volume: 8, Issue:3

    Topics: Apoptosis; Arginase; Autophagy; Carcinoma, Non-Small-Cell Lung; Cell Line, Tumor; Chloroquine; Chrom

2017
High Serum HDGF Levels Are Predictive of Bone Metastasis and Unfavorable Prognosis in Non-Small Cell Lung Cancer.
    The Tohoku journal of experimental medicine, 2017, Volume: 242, Issue:2

    Topics: A549 Cells; Aged; Bone Neoplasms; Carcinoma, Non-Small-Cell Lung; Chloroquine; Cohort Studies; Femal

2017
Modulating lysosomal function through lysosome membrane permeabilization or autophagy suppression restores sensitivity to cisplatin in refractory non-small-cell lung cancer cells.
    PloS one, 2017, Volume: 12, Issue:9

    Topics: A549 Cells; Antineoplastic Agents; Apoptosis; Autophagy; Carcinoma, Non-Small-Cell Lung; Chloroquine

2017
[Inhibition of autophagy initiation stage enhances camptothecin-induced apoptosis in NCI-H1975 cells].
    Xi bao yu fen zi mian yi xue za zhi = Chinese journal of cellular and molecular immunology, 2017, Volume: 33, Issue:12

    Topics: Adenine; Apoptosis; Autophagy; Camptothecin; Carcinoma, Non-Small-Cell Lung; Cell Line, Tumor; Cell

2017
Caffeic acid phenethyl ester down-regulates claudin-2 expression at the transcriptional and post-translational levels and enhances chemosensitivity to doxorubicin in lung adenocarcinoma A549 cells.
    The Journal of nutritional biochemistry, 2018, Volume: 56

    Topics: A549 Cells; Adenocarcinoma of Lung; Caffeic Acids; Cantharidin; Cell Line, Tumor; Cell Proliferation

2018
Chloroquine inhibits cell growth in human A549 lung cancer cells by blocking autophagy and inducing mitochondrial‑mediated apoptosis.
    Oncology reports, 2018, Volume: 39, Issue:6

    Topics: A549 Cells; Autophagy; Cell Proliferation; Cell Survival; Chloroquine; Dose-Response Relationship, D

2018
Chloroquine in combination with aptamer-modified nanocomplexes for tumor vessel normalization and efficient erlotinib/Survivin shRNA co-delivery to overcome drug resistance in EGFR-mutated non-small cell lung cancer.
    Acta biomaterialia, 2018, Volume: 76

    Topics: Animals; Aptamers, Nucleotide; Carcinoma, Non-Small-Cell Lung; Cell Line, Tumor; Chloroquine; Drug R

2018
Metastatic cells are preferentially vulnerable to lysosomal inhibition.
    Proceedings of the National Academy of Sciences of the United States of America, 2018, 09-04, Volume: 115, Issue:36

    Topics: Animals; Cell Line, Tumor; Chloroquine; Drug Resistance, Neoplasm; Gene Expression Regulation, Neopl

2018
AZD9291 promotes autophagy and inhibits PI3K/Akt pathway in NSCLC cancer cells.
    Journal of cellular biochemistry, 2019, Volume: 120, Issue:1

    Topics: A549 Cells; Acrylamides; Aniline Compounds; Animals; Autophagy; Carcinoma, Non-Small-Cell Lung; Cell

2019
Lysosome Membrane Permeabilization and Disruption of the Molecular Target of Rapamycin (mTOR)-Lysosome Interaction Are Associated with the Inhibition of Lung Cancer Cell Proliferation by a Chloroquinoline Analog.
    Molecular pharmacology, 2019, Volume: 95, Issue:1

    Topics: Apoptosis; Autophagy; Cell Line, Tumor; Cell Proliferation; Chloroquine; Chloroquinolinols; Humans;

2019
Anti-cancer effects of CQBTO, a chloroquine, and benzo(e)triazine oxide conjugate.
    Chemical biology & drug design, 2019, Volume: 93, Issue:5

    Topics: Animals; Antineoplastic Agents; Cell Line, Tumor; Cell Survival; Chloroquine; Disease Models, Animal

2019
Protective autophagy decreases osimertinib cytotoxicity through regulation of stem cell-like properties in lung cancer.
    Cancer letters, 2019, 06-28, Volume: 452

    Topics: Acrylamides; Aldehyde Dehydrogenase 1 Family; Aniline Compounds; Animals; Antineoplastic Agents; Aut

2019
The triazole linked galactose substituted dicyano compound can induce autophagy in NSCLC cell lines.
    Gene, 2019, Sep-05, Volume: 712

    Topics: Adaptor Proteins, Signal Transducing; Antineoplastic Agents; Apoptosis; Apoptosis Regulatory Protein

2019
Combination treatment with ABT-737 and chloroquine in preclinical models of small cell lung cancer.
    Molecular cancer, 2013, Mar-02, Volume: 12

    Topics: Animals; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Apoptosis Regulatory Proteins; A

2013
The autophagy inhibitor chloroquine overcomes the innate resistance of wild-type EGFR non-small-cell lung cancer cells to erlotinib.
    Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer, 2013, Volume: 8, Issue:6

    Topics: Animals; Antimalarials; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Autophagy; Blotti

2013
Reversal of lung cancer multidrug resistance by pH-responsive micelleplexes mediating co-delivery of siRNA and paclitaxel.
    Macromolecular bioscience, 2014, Volume: 14, Issue:1

    Topics: Antineoplastic Agents, Phytogenic; Apoptosis; Cell Line, Tumor; Chloroquine; Drug Carriers; Drug Res

2014
Autophagy sensitivity of neuroendocrine lung tumor cells.
    International journal of oncology, 2013, Volume: 43, Issue:6

    Topics: Adaptor Proteins, Signal Transducing; Antimalarials; Autophagy; Cell Line, Tumor; Cell Proliferation

2013
Induction of autophagy contributes to crizotinib resistance in ALK-positive lung cancer.
    Cancer biology & therapy, 2014, Volume: 15, Issue:5

    Topics: Anaplastic Lymphoma Kinase; Animals; Antineoplastic Agents; Autophagy; Cell Line, Tumor; Chloroquine

2014
Chloroquine potentiates the anti-cancer effect of lidamycin on non-small cell lung cancer cells in vitro.
    Acta pharmacologica Sinica, 2014, Volume: 35, Issue:5

    Topics: Aminoglycosides; Animals; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Apo

2014
The checkpoint 1 kinase inhibitor LY2603618 induces cell cycle arrest, DNA damage response and autophagy in cancer cells.
    Apoptosis : an international journal on programmed cell death, 2014, Volume: 19, Issue:9

    Topics: Antineoplastic Agents; Antirheumatic Agents; Autophagy; Carcinoma, Non-Small-Cell Lung; Caspases; Ce

2014
Combining AKT inhibition with chloroquine and gefitinib prevents compensatory autophagy and induces cell death in EGFR mutated NSCLC cells.
    Oncotarget, 2014, Jul-15, Volume: 5, Issue:13

    Topics: Animals; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Autophagy; Blotting, Western; Ca

2014
Pharmacological modulation of autophagy enhances Newcastle disease virus-mediated oncolysis in drug-resistant lung cancer cells.
    BMC cancer, 2014, Jul-30, Volume: 14

    Topics: Animals; Autophagy; Cell Line, Tumor; Chick Embryo; Chloroquine; Drug Resistance, Neoplasm; Gene Kno

2014
Regulation of autophagy and chloroquine sensitivity by oncogenic RAS in vitro is context-dependent.
    Autophagy, 2014, Oct-01, Volume: 10, Issue:10

    Topics: Autophagy; Cell Line, Tumor; Cell Proliferation; Chloroquine; HEK293 Cells; Humans; Lung Neoplasms;

2014
PROX1 promotes metabolic adaptation and fuels outgrowth of Wnt(high) metastatic colon cancer cells.
    Cell reports, 2014, Sep-25, Volume: 8, Issue:6

    Topics: Animals; Apoptosis; Cell Culture Techniques; Cell Line, Tumor; Cell Proliferation; Chloroquine; Colo

2014
Synergistic anti-tumour effects of tetrandrine and chloroquine combination therapy in human cancer: a potential antagonistic role for p21.
    British journal of pharmacology, 2015, Volume: 172, Issue:9

    Topics: Animals; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Autophagy; Benzylisoquinolines;

2015
Chloroquine enhances gefitinib cytotoxicity in gefitinib-resistant nonsmall cell lung cancer cells.
    PloS one, 2015, Volume: 10, Issue:3

    Topics: Adenine; Antineoplastic Agents; Autophagy; Carcinoma, Non-Small-Cell Lung; Cell Line, Tumor; Chloroq

2015
Autophagy Inhibition Overcomes the Antagonistic Effect Between Gefitinib and Cisplatin in Epidermal Growth Factor Receptor Mutant Non--Small-Cell Lung Cancer Cells.
    Clinical lung cancer, 2015, Volume: 16, Issue:5

    Topics: Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Autophagy; Carcinoma, Non-Small-Cell Lung

2015
Quercetin-induced autophagy flux enhances TRAIL-mediated tumor cell death.
    Oncology reports, 2015, Volume: 34, Issue:1

    Topics: Antineoplastic Agents; Autophagy; Cell Line, Tumor; Chloroquine; Dose-Response Relationship, Drug; G

2015
Cytotoxicity of Ru(II) piano-stool complexes with chloroquine and chelating ligands against breast and lung tumor cells: Interactions with DNA and BSA.
    Journal of inorganic biochemistry, 2015, Volume: 153

    Topics: Animals; Antineoplastic Agents; Binding Sites; Breast Neoplasms; Cattle; Cell Line, Tumor; Chelating

2015
AMPK-independent autophagy promotes radioresistance of human tumor cells under clinical relevant hypoxia in vitro.
    Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology, 2015, Volume: 116, Issue:3

    Topics: AMP-Activated Protein Kinases; Animals; Autophagy; Carcinoma, Non-Small-Cell Lung; Cell Hypoxia; Cel

2015
Oxidative pentose phosphate pathway inhibition is a key determinant of antimalarial induced cancer cell death.
    Oncogene, 2016, 06-02, Volume: 35, Issue:22

    Topics: Antimalarials; Apoptosis; Autophagy; Carcinoma, Non-Small-Cell Lung; Cell Line, Tumor; Cell Prolifer

2016
The M2 macrophages induce autophagic vascular disorder and promote mouse sensitivity to urethane-related lung carcinogenesis.
    Developmental and comparative immunology, 2016, Volume: 59

    Topics: Adenocarcinoma; Adenocarcinoma of Lung; Animals; Apoptosis; Autophagy; Benzofurans; Capillary Permea

2016
ER stress and autophagy are involved in the apoptosis induced by cisplatin in human lung cancer cells.
    Oncology reports, 2016, Volume: 35, Issue:5

    Topics: A549 Cells; Adenine; Antineoplastic Agents; Apoptosis; Autophagy; Cell Proliferation; Chloroquine; C

2016
The impact of autophagy on cell death modalities in CRL-5876 lung adenocarcinoma cells after their exposure to γ-rays and/or erlotinib.
    Cell biology and toxicology, 2016, Volume: 32, Issue:2

    Topics: Adenocarcinoma; Adenocarcinoma of Lung; Antineoplastic Agents; Apoptosis; Autophagy; Cell Cycle; Cel

2016
Autophagy inhibition facilitates erlotinib cytotoxicity in lung cancer cells through modulation of endoplasmic reticulum stress.
    International journal of oncology, 2016, Volume: 48, Issue:6

    Topics: Antineoplastic Agents; Autophagy; Carcinoma, Non-Small-Cell Lung; Cell Line, Tumor; Cell Proliferati

2016
Cucurbitacin E induces caspase-dependent apoptosis and protective autophagy mediated by ROS in lung cancer cells.
    Chemico-biological interactions, 2016, Jun-25, Volume: 253

    Topics: Acetylcysteine; Apoptosis; Autophagy; Blotting, Western; Caspase 3; Caspase 7; Cell Line, Tumor; Cel

2016
Paris Saponin II induced apoptosis via activation of autophagy in human lung cancer cells.
    Chemico-biological interactions, 2016, Jun-25, Volume: 253

    Topics: A549 Cells; Acetylcysteine; Apoptosis; Autophagy; Blotting, Western; Cell Line; Chloroquine; Glutath

2016
Stimulation of triple negative breast cancer cell migration and metastases formation is prevented by chloroquine in a pre-irradiated mouse model.
    BMC cancer, 2016, 06-10, Volume: 16

    Topics: Animals; Autophagy; Cell Line, Tumor; Cell Movement; Chloroquine; Cyclooxygenase 2; Female; Gene Exp

2016
Polymeric chloroquine as an inhibitor of cancer cell migration and experimental lung metastasis.
    Journal of controlled release : official journal of the Controlled Release Society, 2016, 12-28, Volume: 244, Issue:Pt B

    Topics: Animals; Antineoplastic Agents; Autophagy; Cell Line, Tumor; Cell Movement; Cell Survival; Chemokine

2016
Blockade efficacy of MEK/ERK-dependent autophagy enhances PI3K/Akt inhibitor NVP-BKM120's therapeutic effectiveness in lung cancer cells.
    Oncotarget, 2016, Oct-11, Volume: 7, Issue:41

    Topics: Aminopyridines; Animals; Antineoplastic Agents; Autophagy; Carcinoma, Non-Small-Cell Lung; Cell Line

2016
Autophagy inhibition upregulates CD4
    Molecular oncology, 2016, Volume: 10, Issue:10

    Topics: Adult; Aged; Aged, 80 and over; Antineoplastic Agents; Antirheumatic Agents; Apoptosis; Autophagy; C

2016
Targeting toll-like receptor 9 with CpG oligodeoxynucleotides enhances anti-tumor responses of peripheral blood mononuclear cells from human lung cancer patients.
    Cancer investigation, 2008, Volume: 26, Issue:5

    Topics: Adjuvants, Immunologic; Animals; Antineoplastic Agents; CD8-Positive T-Lymphocytes; Cell Proliferati

2008
[Modulation of TLR9 on anti-tumor immune responses of peripheral blood mononuclear cells from patients with non-small-cell lung cancer].
    Zhonghua yi xue za zhi, 2008, Apr-29, Volume: 88, Issue:17

    Topics: Aged; Antigens, CD; Antigens, Differentiation, T-Lymphocyte; Carcinoma, Non-Small-Cell Lung; CD3 Com

2008
Perifosine inhibits mammalian target of rapamycin signaling through facilitating degradation of major components in the mTOR axis and induces autophagy.
    Cancer research, 2009, Dec-01, Volume: 69, Issue:23

    Topics: Animals; Autophagy; Cell Cycle Proteins; Cell Line, Tumor; Chloroquine; F-Box Proteins; F-Box-WD Rep

2009
Autophagy blockade enhances HDAC inhibitors' pro-apoptotic effects: potential implications for the treatment of a therapeutic-resistant malignancy.
    Autophagy, 2011, Volume: 7, Issue:4

    Topics: Animals; Antineoplastic Agents; Apoptosis; Autophagy; Chloroquine; Gene Expression Regulation, Neopl

2011
Augmentation of NVP-BEZ235's anticancer activity against human lung cancer cells by blockage of autophagy.
    Cancer biology & therapy, 2011, Sep-15, Volume: 12, Issue:6

    Topics: Animals; Apoptosis; Autophagy; Carcinoma, Non-Small-Cell Lung; Cell Line, Tumor; Cell Proliferation;

2011
Chloroquine enhances the cytotoxicity of topotecan by inhibiting autophagy in lung cancer cells.
    Chinese journal of cancer, 2011, Volume: 30, Issue:10

    Topics: Apoptosis; Apoptosis Regulatory Proteins; Autophagy; bcl-2-Associated X Protein; Bcl-2-Like Protein

2011
Chloroquine overcomes resistance of lung carcinoma cells to the dual PI3K/mTOR inhibitor PI103 by lysosome-mediated apoptosis.
    Anti-cancer drugs, 2013, Volume: 24, Issue:1

    Topics: Antineoplastic Agents; Apoptosis; Cathepsin B; Cell Line, Tumor; Cell Survival; Chloroquine; Drug Re

2013
STUDIES ON THE TREATMENT OF MALIGNANT TUMORS WITH FIBROBLAST-INHIBITING AGENT. 3. EFFECTS OF CHLOROQUINE ON HUMAN CANCERS.
    Acta medicinae Okayama, 1964, Volume: 18

    Topics: Chloroquine; Drug Therapy; Fibroblasts; Geriatrics; Lung Neoplasms; Neoplasms; Radiography; Radiogra

1964
[COLLIQUATIVE AMEBIC HAPITITIS, WITH SECONDARY PULMONARY ABSCESS. ASSOCIATED CHLOROQUINE-EMETINE TREATMENT. RECOVERY].
    Acta medica Italica di medicina tropicale e subtropicale e di gastroenterologia, 1963, Volume: 18

    Topics: Abscess; Chloroquine; Emetine; Geriatrics; Liver Abscess; Liver Abscess, Amebic; Lung Abscess; Lung

1963
Chloroquine inhibits cell growth and induces cell death in A549 lung cancer cells.
    Bioorganic & medicinal chemistry, 2006, May-01, Volume: 14, Issue:9

    Topics: Cell Death; Cell Line, Tumor; Cell Proliferation; Cell Shape; Chloroquine; Humans; Lung Neoplasms

2006
Neutral proteinase inhibitors and antimetastatic effects in mice.
    European journal of cancer, 1980, Volume: 16, Issue:4

    Topics: Animals; Aurintricarboxylic Acid; Chloroquine; Indomethacin; Lung Neoplasms; Mice; Mice, Inbred C57B

1980
Targeting the cytotoxicity of topoisomerase II-directed epipodophyllotoxins to tumor cells in acidic environments.
    Cancer research, 1994, Jun-01, Volume: 54, Issue:11

    Topics: Amsacrine; Animals; Carcinoma, Small Cell; Chloroquine; DNA Damage; DNA Topoisomerases, Type II; DNA

1994
Chloroquine: nonselective inhibition of recovery from radiation injury in tumors and normal tissues.
    Radiation research, 1974, Volume: 60, Issue:1

    Topics: Adenocarcinoma, Bronchiolo-Alveolar; Animals; Chloroquine; DNA; DNA Damage; DNA Repair; DNA, Neoplas

1974
Functional defects of NK cells treated with chloroquine mimic the lytic defects observed in perforin-deficient mice.
    Journal of immunology (Baltimore, Md. : 1950), 2000, Nov-01, Volume: 165, Issue:9

    Topics: Animals; Bone Marrow Cells; Bone Marrow Transplantation; Cell Movement; Cells, Cultured; Chloroquine

2000
Tumor- and drug-induced cutaneous neuro-phospholipidosis.
    Journal of cutaneous pathology, 1975, Volume: 2, Issue:5

    Topics: Adult; Aged; Analgesics; Axons; Carcinoma, Bronchogenic; Chloroquine; Ergotamine; Female; Humans; Li

1975
Characterization of ligand binding and processing by gastrin-releasing peptide receptors in a small-cell lung cancer cell line.
    The Biochemical journal, 1992, Jan-01, Volume: 281 ( Pt 1)

    Topics: Anti-Bacterial Agents; Binding, Competitive; Bombesin; Carcinoma, Small Cell; Cell Line; Chloroquine

1992
Regulation of hormone production in small cell carcinoma of the lung.
    Recent results in cancer research. Fortschritte der Krebsforschung. Progres dans les recherches sur le cancer, 1985, Volume: 99

    Topics: Adrenocorticotropic Hormone; Bethanechol; Bethanechol Compounds; Calcitonin; Carcinoma, Small Cell;

1985
Mediation of reduction of spontaneous and experimental pulmonary metastases by ricin A-chain immunotoxin 45-2D9-RTA with potentiation by systemic monensin in mice.
    Cancer research, 1988, Jun-15, Volume: 48, Issue:12

    Topics: Ammonium Chloride; Animals; Antigens, Neoplasm; Chloroquine; Dimethyl Sulfoxide; Drug Synergism; Fem

1988
Antiteratogenic and anticarcinogenic effects of X-rays in urethane-treated NMRI mice.
    International journal of radiation biology and related studies in physics, chemistry, and medicine, 1987, Volume: 51, Issue:6

    Topics: Abnormalities, Drug-Induced; Animals; Ascorbic Acid; Chloroquine; Female; Lung Neoplasms; Male; Mice

1987
[Current usage of antineoplastic agents].
    Naika. Internal medicine, 1971, Volume: 27, Issue:6

    Topics: Antineoplastic Agents; Bronchial Neoplasms; Chloroquine; Chymotrypsin; Cyclophosphamide; Female; Fib

1971
[Loefgren's syndrome in a 37-year-old woman].
    Reumatologia, 1973, Volume: 11, Issue:4

    Topics: Adrenal Cortex Hormones; Adult; Chloroquine; Drug Therapy, Combination; Erythema Nodosum; Female; Hu

1973
[Treatment of lung cancer (especially small-sized) with Bleomycin--significance of CPBP therapy].
    Gan no rinsho. Japan journal of cancer clinics, 1970, Volume: 16, Issue:12

    Topics: Adenocarcinoma; Adult; Aged; Animals; Antibiotics, Antineoplastic; Carcinoma, Squamous Cell; Chloroq

1970