Page last updated: 2024-10-24

chloroquine and Benign Neoplasms, Brain

chloroquine has been researched along with Benign Neoplasms, Brain in 41 studies

Chloroquine: The prototypical antimalarial agent with a mechanism that is not well understood. It has also been used to treat rheumatoid arthritis, systemic lupus erythematosus, and in the systemic therapy of amebic liver abscesses.
chloroquine : An aminoquinoline that is quinoline which is substituted at position 4 by a [5-(diethylamino)pentan-2-yl]amino group at at position 7 by chlorine. It is used for the treatment of malaria, hepatic amoebiasis, lupus erythematosus, light-sensitive skin eruptions, and rheumatoid arthritis.

Research Excerpts

ExcerptRelevanceReference
"To examine the effect of adding chloroquine to conventional therapy for glioblastoma multiforme."9.12Adding chloroquine to conventional treatment for glioblastoma multiforme: a randomized, double-blind, placebo-controlled trial. ( Briceño, E; López-González, MA; Sotelo, J, 2006)
" They studied the effects of chloroquine, an antimutagenic with an optimal pharmacological profile for human use, as adjuvant for the treatment of patients with glioblastoma multiforme (GBM)."9.10Therapy of glioblastoma multiforme improved by the antimutagenic chloroquine. ( Briceño, E; Reyes, S; Sotelo, J, 2003)
"Chloroquine has been shown to increase the cellular retention and nuclear incorporation of 125I-labeled monoclonal antibody (MAb) 425, a murine anti-epidermal growth factor receptor monoclonal antibody, in human high-grade glioma cells in vitro."7.69Biodistribution of 125I-MAb 425 in a human glioma xenograft model: effect of chloroquine. ( Bender, H; Brady, LW; Class, R; Dilling, TJ; Emrich, JG; Hand, CM, 1997)
"Glioblastoma is the most common and aggressive primary brain tumor in adults."5.48Nitazoxanide, an antiprotozoal drug, inhibits late-stage autophagy and promotes ING1-induced cell cycle arrest in glioblastoma. ( Chen, X; Han, D; Hou, X; Liu, H; Liu, Z; Ma, J; Peng, F; Shen, C; Shu, M; Wang, K; Wang, L; Wang, X; Wu, J; Yang, G; Yin, Z; Zhang, D; Zhao, B; Zhao, S; Zhao, W; Zheng, Z; Zhong, C, 2018)
"Malignant glioma is the most aggressive brain tumor."5.46Cobalt chloride treatment induces autophagic apoptosis in human glioma cells via a p53-dependent pathway. ( Chen, JT; Chen, RM; Cheng, BC; Chio, CC; Liu, SH; Yang, ST, 2017)
"Quercetin can inhibit cell viability and induce autophagy of U87 and U251 glioma cells in a dose-dependent manner."5.43Inhibition of autophagy induced by quercetin at a late stage enhances cytotoxic effects on glioma cells. ( Bi, Y; Gao, D; Hou, X; Li, C; Liu, H; Liu, Y; Liu, Z; Peng, F; Shen, C; Shi, C; Wang, K; Wang, X; Wu, J; Zhang, J; Zhao, B; Zhao, S; Zheng, Z; Zhong, C; Zou, H, 2016)
"Chloroquine (CQ) is an anti-malaria and immunomodulatory drug that may inhibit autophagy and increase the radiosensitivity of GBM."5.40FET-PET-based reirradiation and chloroquine in patients with recurrent glioblastoma: first tolerability and feasibility results. ( Bilger, A; Bittner, MI; Firat, E; Grosu, AL; Meyer, PT; Milanović, D; Niedermann, G; Weber, WA; Wiedenmann, N, 2014)
"Pretreatment with chloroquine, an autophagy inhibitor, strongly augmented apoptosis in U373MG cells, indicating that quercetin induced protective autopagy in U373MG cells."5.39Quercetin induces mitochondrial mediated apoptosis and protective autophagy in human glioblastoma U373MG cells. ( Ahn, KS; Cho, SK; Kim, H; Moon, JY, 2013)
"To examine the effect of adding chloroquine to conventional therapy for glioblastoma multiforme."5.12Adding chloroquine to conventional treatment for glioblastoma multiforme: a randomized, double-blind, placebo-controlled trial. ( Briceño, E; López-González, MA; Sotelo, J, 2006)
" They studied the effects of chloroquine, an antimutagenic with an optimal pharmacological profile for human use, as adjuvant for the treatment of patients with glioblastoma multiforme (GBM)."5.10Therapy of glioblastoma multiforme improved by the antimutagenic chloroquine. ( Briceño, E; Reyes, S; Sotelo, J, 2003)
"These data suggest that the anti-proliferative activity of ADS-I in human glioma cells is associated with the activation of autophagy in addition to cell cycle arrest and apoptosis, and the antagonistic effect of chloroquine suggests an important role of autophagy in ADS-I-mediated cell death against tumor growth."3.80Stimulation of autophagic activity in human glioma cells by anti-proliferative ardipusilloside I isolated from Ardisia pusilla. ( Du, C; Guan, Q; Wang, L; Wang, PY; Wang, R; Wang, XJ; Xiao, X, 2014)
"Chloroquine has been shown to increase the cellular retention and nuclear incorporation of 125I-labeled monoclonal antibody (MAb) 425, a murine anti-epidermal growth factor receptor monoclonal antibody, in human high-grade glioma cells in vitro."3.69Biodistribution of 125I-MAb 425 in a human glioma xenograft model: effect of chloroquine. ( Bender, H; Brady, LW; Class, R; Dilling, TJ; Emrich, JG; Hand, CM, 1997)
"The progression-free survival of brain metastases (BMPFS) rates at one year were 83."2.78Phase II randomized, double-blind, placebo-controlled study of whole-brain irradiation with concomitant chloroquine for brain metastases. ( Arce-Salinas, C; Arrieta, O; Crismatt, A; Dorantes-Gallareta, Y; Gamboa-Vignolle, C; Gonzalez-Pinedo, M; Nuñez-Gomez, R; Ortega-Gomez, A; Rojas-Puentes, LL, 2013)
"To enhance the benefit of TMZ in the treatment of glioblastomas, effective combination strategies are needed to sensitize glioblastoma cells to TMZ."2.53Targeting autophagy to sensitive glioma to temozolomide treatment. ( Dai, S; Gong, Z; Qian, L; Sun, L; Xu, Z; Yan, Y, 2016)
"Treatment with Dabrafenib and Trametinib was started, and tumor size increased in size after 14 months of treatment."1.56Using personalized medicine in gliomas: a genomic approach to diagnosis and overcoming treatment resistance in a case with pleomorphic xanthoastrocytoma. ( Evernden, BR; Forsyth, P; Fusco, MJ; Macaulay, RJ; Peguero, E; Piña, Y; Smalley, KS; Walko, CM, 2020)
"Glioblastoma is a disease with high heterogeneity that has long been difficult for doctors to identify and treat."1.51Oncogenic Ras is downregulated by ARHI and induces autophagy by Ras/AKT/mTOR pathway in glioblastoma. ( Chen, X; Gao, M; Liu, Z; Shu, M; Wang, K; Wang, X; Ye, J; Yin, Z; Zhao, B; Zhao, H; Zhao, S; Zhao, W; Zheng, Z; Zhong, C, 2019)
"Glioblastoma is the most common and aggressive primary brain tumor in adults."1.48Nitazoxanide, an antiprotozoal drug, inhibits late-stage autophagy and promotes ING1-induced cell cycle arrest in glioblastoma. ( Chen, X; Han, D; Hou, X; Liu, H; Liu, Z; Ma, J; Peng, F; Shen, C; Shu, M; Wang, K; Wang, L; Wang, X; Wu, J; Yang, G; Yin, Z; Zhang, D; Zhao, B; Zhao, S; Zhao, W; Zheng, Z; Zhong, C, 2018)
"Treatment with chloroquine, or knockdown of the autophagy gene ATG5, inhibited the formation of VM and KDR phosphorylation in GSCs."1.46Autophagy-induced KDR/VEGFR-2 activation promotes the formation of vasculogenic mimicry by glioma stem cells. ( Bian, XW; Chen, Q; Fu, WJ; Niu, Q; Ping, YF; Wang, JM; Weng, HY; Wu, HB; Yang, S; Yao, XH; Zhang, X; Zhao, XL, 2017)
"Malignant glioma is the most aggressive brain tumor."1.46Cobalt chloride treatment induces autophagic apoptosis in human glioma cells via a p53-dependent pathway. ( Chen, JT; Chen, RM; Cheng, BC; Chio, CC; Liu, SH; Yang, ST, 2017)
"Quercetin can inhibit cell viability and induce autophagy of U87 and U251 glioma cells in a dose-dependent manner."1.43Inhibition of autophagy induced by quercetin at a late stage enhances cytotoxic effects on glioma cells. ( Bi, Y; Gao, D; Hou, X; Li, C; Liu, H; Liu, Y; Liu, Z; Peng, F; Shen, C; Shi, C; Wang, K; Wang, X; Wu, J; Zhang, J; Zhao, B; Zhao, S; Zheng, Z; Zhong, C; Zou, H, 2016)
"Inhibition of early steps of autophagy by 3-MA or Beclin 1 knockdown decreased the toxic effect of arsenic trioxide (ATO) in GBM cell lines."1.42Impact of autophagy inhibition at different stages on cytotoxic effect of autophagy inducer in glioblastoma cells. ( Bi, Y; Chen, X; Cho, K; Hou, X; Li, C; Liu, H; Liu, Y; Peng, F; Shen, C; Wang, K; Wang, X; Yang, Z; Zhang, J; Zhang, W; Zhang, X; Zhao, S; Zheng, Z; Zhong, C; Zou, H, 2015)
"Chloroquine (CQ) is an anti-malaria and immunomodulatory drug that may inhibit autophagy and increase the radiosensitivity of GBM."1.40FET-PET-based reirradiation and chloroquine in patients with recurrent glioblastoma: first tolerability and feasibility results. ( Bilger, A; Bittner, MI; Firat, E; Grosu, AL; Meyer, PT; Milanović, D; Niedermann, G; Weber, WA; Wiedenmann, N, 2014)
"Pretreatment with chloroquine, an autophagy inhibitor, strongly augmented apoptosis in U373MG cells, indicating that quercetin induced protective autopagy in U373MG cells."1.39Quercetin induces mitochondrial mediated apoptosis and protective autophagy in human glioblastoma U373MG cells. ( Ahn, KS; Cho, SK; Kim, H; Moon, JY, 2013)
"Chloroquine has demonstrated high affinity for aldehyde dehydrogenase 1A1 (ALDH1), an enzyme expressed in the highly tumorigenic CD133+ brain tumor initiating subpopulation."1.38Synthesis and preliminary evaluation of n.c.a. iodoquine: a novel radiotracer with high uptake in cells with high ALDH1 expression. ( Chin, BB; Dai, D; Greer, KL; Hjelemand, A; Lascola, C; McDougald, D; McLendon, R; Metzler, SD; Reiman, R; Rich, J; Song, H; Storms, R; Vaidyanathan, G, 2012)

Research

Studies (41)

TimeframeStudies, this research(%)All Research%
pre-19902 (4.88)18.7374
1990's1 (2.44)18.2507
2000's8 (19.51)29.6817
2010's27 (65.85)24.3611
2020's3 (7.32)2.80

Authors

AuthorsStudies
Piña, Y1
Fusco, MJ1
Macaulay, RJ1
Walko, CM1
Peguero, E1
Evernden, BR1
Smalley, KS1
Forsyth, P1
Nguépy Keubo, FR1
Mboua, PC1
Djifack Tadongfack, T1
Fokouong Tchoffo, E1
Tasson Tatang, C1
Ide Zeuna, J1
Noupoue, EM1
Tsoplifack, CB1
Folefack, GO1
Kettani, M1
Bandelier, P1
Huo, J1
Li, H4
Yu, D1
Arulsamy, N1
AlAbbad, S1
Sardot, T1
Lekashvili, O1
Decato, D1
Lelj, F1
Alexander Ross, JB1
Rosenberg, E1
Nazir, H1
Muthuswamy, N1
Louis, C1
Jose, S1
Prakash, J1
Buan, MEM1
Flox, C1
Chavan, S1
Shi, X1
Kauranen, P1
Kallio, T1
Maia, G1
Tammeveski, K1
Lymperopoulos, N1
Carcadea, E1
Veziroglu, E1
Iranzo, A1
M Kannan, A1
Arunamata, A1
Tacy, TA1
Kache, S1
Mainwaring, RD1
Ma, M1
Maeda, K1
Punn, R1
Noguchi, S1
Hahn, S3
Iwasa, Y3
Ling, J2
Voccio, JP2
Kim, Y3
Song, J3
Bascuñán, J2
Chu, Y1
Tomita, M1
Cazorla, M1
Herrera, E1
Palomeque, E1
Saud, N1
Hoplock, LB1
Lobchuk, MM1
Lemoine, J1
Li, X10
Henson, MA1
Unsihuay, D1
Qiu, J1
Swaroop, S1
Nagornov, KO1
Kozhinov, AN1
Tsybin, YO1
Kuang, S1
Laskin, J1
Zin, NNINM1
Mohamad, MN1
Roslan, K1
Abdul Wafi, S1
Abdul Moin, NI1
Alias, A1
Zakaria, Y1
Abu-Bakar, N1
Naveed, A1
Jilani, K1
Siddique, AB1
Akbar, M1
Riaz, M1
Mushtaq, Z1
Sikandar, M1
Ilyas, S1
Bibi, I1
Asghar, A1
Rasool, G1
Irfan, M1
Li, XY1
Zhao, S5
Fan, XH1
Chen, KP1
Hua, W1
Liu, ZM1
Xue, XD1
Zhou, B1
Zhang, S2
Xing, YL1
Chen, MA1
Sun, Y1
Neradilek, MB1
Wu, XT1
Zhang, D3
Huang, W1
Cui, Y1
Yang, QQ1
Li, HW1
Zhao, XQ1
Hossein Rashidi, B1
Tarafdari, A1
Ghazimirsaeed, ST1
Shahrokh Tehraninezhad, E1
Keikha, F1
Eslami, B1
Ghazimirsaeed, SM1
Jafarabadi, M1
Silvani, Y1
Lovita, AND1
Maharani, A1
Wiyasa, IWA1
Sujuti, H1
Ratnawati, R1
Raras, TYM1
Lemin, AS1
Rahman, MM1
Pangarah, CA1
Kiyu, A1
Zeng, C2
Du, H1
Lin, D1
Jalan, D1
Rubagumya, F1
Hopman, WM1
Vanderpuye, V1
Lopes, G1
Seruga, B1
Booth, CM1
Berry, S1
Hammad, N1
Sajo, EA1
Okunade, KS1
Olorunfemi, G1
Rabiu, KA1
Anorlu, RI1
Xu, C2
Xiang, Y1
Xu, X1
Zhou, L2
Dong, X1
Tang, S1
Gao, XC1
Wei, CH1
Zhang, RG1
Cai, Q1
He, Y1
Tong, F1
Dong, JH1
Wu, G1
Dong, XR1
Tang, X1
Tao, F1
Xiang, W1
Zhao, Y2
Jin, L1
Tao, H1
Lei, Y1
Gan, H1
Huang, Y1
Chen, Y3
Chen, L3
Shan, A1
Zhao, H3
Wu, M2
Ma, Q1
Wang, J5
Zhang, E1
Zhang, J5
Li, Y5
Xue, F1
Deng, L1
Liu, L2
Yan, Z2
Wang, Y2
Meng, J1
Chen, G2
Anastassiadou, M1
Bernasconi, G1
Brancato, A1
Carrasco Cabrera, L1
Greco, L1
Jarrah, S1
Kazocina, A1
Leuschner, R1
Magrans, JO1
Miron, I1
Nave, S1
Pedersen, R1
Reich, H1
Rojas, A1
Sacchi, A1
Santos, M1
Theobald, A1
Vagenende, B1
Verani, A1
Du, L1
Liu, X2
Ren, Y1
Li, J7
Li, P1
Jiao, Q1
Meng, P1
Wang, F2
Wang, YS1
Wang, C3
Zhou, X2
Wang, W1
Wang, S2
Hou, J1
Zhang, A1
Lv, B1
Gao, C1
Pang, D1
Lu, K1
Ahmad, NH1
Wang, L3
Zhu, J2
Zhang, L2
Zhuang, T1
Tu, J1
Zhao, Z1
Qu, Y1
Yao, H1
Wang, X10
Lee, DF1
Shen, J3
Wen, L1
Huang, G2
Xie, X1
Zhao, Q1
Hu, W1
Zhang, Y4
Wu, X1
Lu, J2
Li, M1
Li, W2
Wu, W1
Du, F1
Ji, H1
Yang, X2
Xu, Z2
Wan, L1
Wen, Q1
Cho, CH1
Zou, C1
Xiao, Z1
Liao, J1
Su, X1
Bi, Z1
Su, Q1
Huang, H2
Wei, Y2
Gao, Y2
Na, KJ1
Choi, H1
Oh, HR1
Kim, YH1
Lee, SB1
Jung, YJ1
Koh, J1
Park, S1
Lee, HJ1
Jeon, YK1
Chung, DH1
Paeng, JC1
Park, IK1
Kang, CH1
Cheon, GJ1
Kang, KW1
Lee, DS1
Kim, YT1
Pajuelo-Lozano, N1
Alcalá, S1
Sainz, B1
Perona, R1
Sanchez-Perez, I1
Logotheti, S1
Marquardt, S1
Gupta, SK1
Richter, C1
Edelhäuser, BAH1
Engelmann, D1
Brenmoehl, J1
Söhnchen, C1
Murr, N1
Alpers, M1
Singh, KP1
Wolkenhauer, O1
Heckl, D1
Spitschak, A1
Pützer, BM1
Liao, Y1
Cheng, J1
Kong, X1
Li, S1
Zhang, M4
Zhang, H1
Yang, T2
Dong, Y1
Xu, Y1
Yuan, Z1
Cao, J1
Zheng, Y1
Luo, Z1
Mei, Z1
Yao, Y1
Liu, Z5
Liang, C1
Yang, H1
Song, Y1
Yu, K1
Zhu, C1
Huang, Z1
Qian, J1
Ge, J1
Hu, J2
Wang, H3
Liu, Y6
Mi, Y1
Kong, H1
Xi, D1
Yan, W1
Luo, X1
Ning, Q1
Chang, X2
Zhang, T2
Wang, Q2
Rathore, MG1
Reddy, K1
Chen, H1
Shin, SH1
Ma, WY1
Bode, AM1
Dong, Z1
Mu, W1
Liu, C3
Gao, F1
Qi, Y1
Lu, H1
Zhang, X7
Cai, X1
Ji, RY1
Hou, Y3
Tian, J2
Shi, Y1
Ying, S1
Tan, M1
Feng, G1
Kuang, Y1
Chen, D1
Wu, D3
Zhu, ZQ1
Tang, HX1
Shi, ZE1
Kang, J1
Liu, Q1
Qi, J2
Mu, J1
Cong, Z1
Chen, S2
Fu, D1
Li, Z2
Celestrin, CP1
Rocha, GZ1
Stein, AM1
Guadagnini, D1
Tadelle, RM1
Saad, MJA1
Oliveira, AG1
Bianconi, V1
Bronzo, P1
Banach, M1
Sahebkar, A1
Mannarino, MR1
Pirro, M1
Patsourakos, NG1
Kouvari, M1
Kotidis, A1
Kalantzi, KI1
Tsoumani, ME1
Anastasiadis, F1
Andronikos, P1
Aslanidou, T1
Efraimidis, P1
Georgiopoulos, A1
Gerakiou, K1
Grigoriadou-Skouta, E1
Grigoropoulos, P1
Hatzopoulos, D1
Kartalis, A1
Lyras, A1
Markatos, G1
Mikrogeorgiou, A1
Myroforou, I1
Orkopoulos, A1
Pavlidis, P1
Petras, C1
Riga, M1
Skouloudi, M1
Smyrnioudis, N1
Thomaidis, K1
Tsikouri, GE1
Tsikouris, EI1
Zisimos, K1
Vavoulis, P1
Vitali, MG1
Vitsas, G1
Vogiatzidis, C1
Chantanis, S1
Fousas, S1
Panagiotakos, DB1
Tselepis, AD1
Jungen, C1
Alken, FA1
Eickholt, C1
Scherschel, K1
Kuklik, P1
Klatt, N1
Schwarzl, J1
Moser, J1
Jularic, M1
Akbulak, RO1
Schaeffer, B1
Willems, S1
Meyer, C1
Nowak, JK1
Szczepanik, M1
Trypuć, M1
Pogorzelski, A1
Bobkowski, W1
Grytczuk, M1
Minarowska, A1
Wójciak, R1
Walkowiak, J1
Lu, Y1
Xi, J1
Li, C4
Chen, W2
Hu, X1
Zhang, F1
Wei, H1
Wang, Z1
Gurzu, S1
Jung, I1
Sugimura, H2
Stefan-van Staden, RI1
Yamada, H1
Natsume, H1
Iwashita, Y1
Szodorai, R1
Szederjesi, J1
Yari, D1
Ehsanbakhsh, Z1
Validad, MH1
Langroudi, FH1
Esfandiari, H1
Prager, A1
Hassanpour, K1
Kurup, SP1
Mets-Halgrimson, R1
Yoon, H1
Zeid, JL1
Mets, MB1
Rahmani, B1
Araujo-Castillo, RV1
Culquichicón, C1
Solis Condor, R1
Efendi, F1
Sebayang, SK1
Astutik, E1
Hadisuyatmana, S1
Has, EMM1
Kuswanto, H1
Foroutan, T1
Ahmadi, F1
Moayer, F1
Khalvati, S1
Zhang, Q2
Lyu, Y1
Huang, J1
Yu, N1
Wen, Z1
Hou, H1
Zhao, T1
Gupta, A1
Khosla, N1
Govindasamy, V1
Saini, A1
Annapurna, K1
Dhakate, SR1
Akkaya, Ö1
Chandgude, AL1
Dömling, A1
Harnett, J1
Oakes, K1
Carè, J1
Leach, M1
Brown, D1
Cramer, H1
Pinder, TA1
Steel, A1
Anheyer, D1
Cantu, J1
Valle, J1
Flores, K1
Gonzalez, D1
Valdes, C1
Lopez, J1
Padilla, V1
Alcoutlabi, M1
Parsons, J1
Núñez, K1
Hamed, M1
Fort, D1
Bruce, D1
Thevenot, P1
Cohen, A1
Weber, P1
Menezes, AMB1
Gonçalves, H1
Perez-Padilla, R1
Jarvis, D1
de Oliveira, PD1
Wehrmeister, FC1
Mir, S1
Wong, J1
Ryan, CM1
Bellingham, G1
Singh, M2
Waseem, R1
Eckert, DJ1
Chung, F1
Hegde, H1
Shimpi, N1
Panny, A1
Glurich, I1
Christie, P1
Acharya, A1
English, KL1
Downs, M1
Goetchius, E1
Buxton, R1
Ryder, JW1
Ploutz-Snyder, R1
Guilliams, M1
Scott, JM1
Ploutz-Snyder, LL1
Martens, C1
Goplen, FK1
Aasen, T1
Gjestad, R1
Nordfalk, KF1
Nordahl, SHG1
Inoue, T1
Soshi, S1
Kubota, M1
Marumo, K1
Mortensen, NP1
Caffaro, MM1
Patel, PR2
Uddin, MJ1
Aravamudhan, S1
Sumner, SJ1
Fennell, TR1
Gal, RL1
Cohen, NJ1
Kruger, D1
Beck, RW1
Bergenstal, RM1
Calhoun, P1
Cushman, T1
Haban, A1
Hood, K1
Johnson, ML1
McArthur, T1
Olson, BA1
Weinstock, RS1
Oser, SM1
Oser, TK1
Bugielski, B1
Strayer, H1
Aleppo, G1
Maruyama, H1
Hirayama, K1
Yamashita, M1
Ohgi, K1
Tsujimoto, R1
Takayasu, M1
Shimohata, H1
Kobayashi, M1
Buscagan, TM1
Rees, DC1
Jaborek, JR1
Zerby, HN1
Wick, MP1
Fluharty, FL1
Moeller, SJ1
Razavi, P1
Dickler, MN1
Shah, PD1
Toy, W1
Brown, DN1
Won, HH1
Li, BT1
Shen, R1
Vasan, N1
Modi, S1
Jhaveri, K1
Caravella, BA1
Patil, S1
Selenica, P1
Zamora, S1
Cowan, AM1
Comen, E1
Singh, A1
Covey, A1
Berger, MF1
Hudis, CA1
Norton, L1
Nagy, RJ1
Odegaard, JI1
Lanman, RB1
Solit, DB1
Robson, ME1
Lacouture, ME1
Brogi, E1
Reis-Filho, JS1
Moynahan, ME1
Scaltriti, M1
Chandarlapaty, S1
Papouskova, K1
Moravcova, M1
Masrati, G1
Ben-Tal, N1
Sychrova, H1
Zimmermannova, O1
Fang, J1
Fan, Y1
Luo, T2
Su, H1
Tsetseris, L1
Anthopoulos, TD1
Liu, SF1
Zhao, K1
Sacan, O1
Turkyilmaz, IB1
Bayrak, BB1
Mutlu, O1
Akev, N1
Yanardag, R1
Gruber, S1
Kamnoedboon, P1
Özcan, M1
Srinivasan, M1
Jo, YH1
Oh, HK1
Jeong, SY1
Lee, BG1
Zheng, J1
Guan, H1
Li, D2
Tan, H1
Maji, TK1
J R, A1
Mukherjee, S2
Alexander, R1
Mondal, A1
Das, S1
Sharma, RK1
Chakraborty, NK1
Dasgupta, K1
Sharma, AMR1
Hawaldar, R1
Pandey, M1
Naik, A1
Majumdar, K1
Pal, SK1
Adarsh, KV1
Ray, SK1
Karmakar, D1
Ma, Y2
Gao, W1
Ma, S1
Lin, W1
Zhou, T1
Wu, T1
Wu, Q1
Ye, C1
He, X1
Jiang, F1
Yuan, D1
Chen, Q2
Hong, M1
Chen, K1
Hussain, M1
Razi, SS1
Yildiz, EA1
Zhao, J1
Yaglioglu, HG1
Donato, MD1
Jiang, J1
Jamil, MI1
Zhan, X1
Chen, F1
Cheng, D1
Wu, CT1
Utsunomiya, T1
Ichii, T1
Fujinami, S1
Nakajima, K1
Sanchez, DM1
Raucci, U1
Ferreras, KN1
Martínez, TJ1
Mordi, NA1
Mordi, IR1
Singh, JS1
McCrimmon, RJ1
Struthers, AD1
Lang, CC1
Wang, XW1
Yuan, LJ1
Yang, Y1
Chen, WF1
Luo, R1
Yang, K1
Amarasiri, SS1
Attanayake, AP1
Arawwawala, LDAM1
Jayatilaka, KAPW1
Mudduwa, LKB1
Ogunsuyi, O2
Akanni, O1
Alabi, O1
Alimba, C1
Adaramoye, O1
Cambier, S1
Eswara, S1
Gutleb, AC1
Bakare, A1
Gu, Z1
Cong, J1
Pellegrini, M1
Palmieri, S1
Ricci, A1
Serio, A1
Paparella, A1
Lo Sterzo, C1
Jadeja, SD1
Vaishnav, J1
Mansuri, MS1
Shah, C1
Mayatra, JM1
Shah, A1
Begum, R1
Song, H3
Lian, Y1
Wan, T1
Schultz-Lebahn, A1
Skipper, MT1
Hvas, AM1
Larsen, OH1
Hijazi, Z1
Granger, CB1
Hohnloser, SH1
Westerbergh, J1
Lindbäck, J1
Alexander, JH1
Keltai, M1
Parkhomenko, A1
López-Sendón, JL1
Lopes, RD1
Siegbahn, A1
Wallentin, L1
El-Tarabany, MS1
Saleh, AA1
El-Araby, IE1
El-Magd, MA1
van Ginkel, MPH1
Schijven, MP1
van Grevenstein, WMU1
Schreuder, HWR1
Pereira, EDM1
da Silva, J1
Carvalho, PDS1
Grivicich, I1
Picada, JN1
Salgado Júnior, IB1
Vasques, GJ1
Pereira, MADS1
Reginatto, FH1
Ferraz, ABF1
Vasilenko, EA1
Gorshkova, EN1
Astrakhantseva, IV1
Drutskaya, MS1
Tillib, SV1
Nedospasov, SA1
Mokhonov, VV1
Nam, YW1
Cui, M1
Orfali, R1
Viegas, A1
Nguyen, M1
Mohammed, EHM1
Zoghebi, KA1
Rahighi, S1
Parang, K1
Patterson, KC1
Kahanovitch, U1
Gonçalves, CM1
Hablitz, JJ1
Staruschenko, A1
Mulkey, DK1
Olsen, ML1
Gu, L1
Cao, X1
Mukhtar, A1
Wu, K1
Zhang, YY1
Zhu, Y1
Lu, DZ1
Dong, W1
Bi, WJ1
Feng, XJ1
Wen, LM1
Sun, H1
Qi, MC1
Chang, CC1
Dinh, TK1
Lee, YA1
Wang, FN1
Sung, YC1
Yu, PL1
Chiu, SC1
Shih, YC1
Wu, CY1
Huang, YD1
Lu, TT1
Wan, D1
Sakizadeh, J1
Cline, JP1
Snyder, MA1
Kiely, CJ1
McIntosh, S1
Jiang, X1
Cao, JW1
Zhao, CK1
Yang, R1
Zhang, QY1
Chen, KJ2
Liu, H4
He, Z1
Chen, B1
Wu, J3
Du, X1
Moore, J1
Blank, BR1
Eksterowicz, J1
Sutimantanapi, D1
Yuen, N1
Metzger, T1
Chan, B1
Huang, T1
Chen, X4
Duong, F1
Kong, W1
Chang, JH1
Sun, J1
Zavorotinskaya, T1
Ye, Q1
Junttila, MR1
Ndubaku, C1
Friedman, LS1
Fantin, VR1
Sun, D1
Fei, P1
Xie, Q1
Jiang, Y1
Feng, H1
Chang, Y1
Kang, H1
Xing, M1
Chen, J1
Shao, Z1
Yuan, C1
Wu, Y1
Allan, R1
Canham, K1
Wallace, R1
Singh, D1
Ward, J1
Cooper, A1
Newcomb, C1
Nammour, S1
El Mobadder, M1
Maalouf, E1
Namour, M1
Namour, A1
Rey, G1
Matamba, P1
Matys, J1
Zeinoun, T1
Grzech-Leśniak, K1
Segabinazi Peserico, C1
Garozi, L1
Zagatto, AM1
Machado, FA1
Hirth, JM1
Dinehart, EE1
Lin, YL1
Kuo, YF1
Nouri, SS1
Ritchie, C1
Volow, A1
Li, B2
McSpadden, S1
Dearman, K1
Kotwal, A1
Sudore, RL1
Ward, L1
Thakur, A1
Kondadasula, SV1
Ji, K1
Schalk, DL1
Bliemeister, E1
Ung, J1
Aboukameel, A1
Casarez, E1
Sloane, BF1
Lum, LG1
Xiao, M1
Feng, X1
Gao, R1
Du, B1
Brooks, T1
Zwirner, J1
Hammer, N1
Ondruschka, B1
Jermy, M1
Luengo, A1
Marzo, I1
Reback, M1
Daubit, IM1
Fernández-Moreira, V1
Metzler-Nolte, N1
Gimeno, MC1
Tonchev, I1
Heberman, D1
Peretz, A1
Medvedovsky, AT1
Gotsman, I1
Rashi, Y1
Poles, L1
Goland, S1
Perlman, GY1
Danenberg, HD1
Beeri, R1
Shuvy, M1
Fu, Q1
Yang, D1
Sarapulova, A1
Pang, Q1
Meng, Y1
Wei, L1
Ehrenberg, H1
Kim, CC1
Jeong, SH1
Oh, KH1
Nam, KT1
Sun, JY1
Ning, J1
Duan, Z1
Kershaw, SV1
Rogach, AL1
Gao, Z1
Wang, T1
Li, Q1
Cao, T1
Guo, L1
Fu, Y1
Seeger, ZL1
Izgorodina, EI1
Hue, S1
Beldi-Ferchiou, A1
Bendib, I1
Surenaud, M1
Fourati, S1
Frapard, T1
Rivoal, S1
Razazi, K1
Carteaux, G1
Delfau-Larue, MH1
Mekontso-Dessap, A1
Audureau, E1
de Prost, N1
Gao, SS1
Duangthip, D1
Lo, ECM1
Chu, CH1
Roberts, W1
Rosenheck, RA1
Miyake, T1
Kimoto, E1
Luo, L1
Mathialagan, S1
Horlbogen, LM1
Ramanathan, R1
Wood, LS1
Johnson, JG1
Le, VH1
Vourvahis, M1
Rodrigues, AD1
Muto, C1
Furihata, K1
Sugiyama, Y1
Kusuhara, H1
Gong, Q1
Song, W1
Sun, B1
Cao, P1
Gu, S1
Sun, X1
Zhou, G1
Toma, C1
Khandhar, S1
Zalewski, AM1
D'Auria, SJ1
Tu, TM1
Jaber, WA1
Cho, J2
Suwandaratne, NS1
Razek, S1
Choi, YH1
Piper, LFJ1
Watson, DF1
Banerjee, S1
Xie, S1
Lindsay, AP1
Bates, FS1
Lodge, TP1
Hao, Y1
Chapovetsky, A1
Liu, JJ1
Welborn, M1
Luna, JM1
Do, T1
Haiges, R1
Miller Iii, TF1
Marinescu, SC1
Lopez, SA1
Compter, I2
Eekers, DBP1
Hoeben, A1
Rouschop, KMA2
Reymen, B1
Ackermans, L2
Beckervordersantforth, J1
Bauer, NJC1
Anten, MM1
Wesseling, P1
Postma, AA1
De Ruysscher, D1
Lambin, P1
Qiang, L1
Yang, S2
Cui, YH1
He, YY1
Kumar, SK1
Jacobus, SJ1
Cohen, AD1
Weiss, M1
Callander, N1
Singh, AK1
Parker, TL1
Menter, A1
Parsons, B1
Kumar, P1
Kapoor, P1
Rosenberg, A1
Zonder, JA1
Faber, E1
Lonial, S1
Anderson, KC1
Richardson, PG1
Orlowski, RZ1
Wagner, LI1
Rajkumar, SV1
Li, G1
Hou, G1
Cui, J1
Xie, H1
Sun, Z1
Fang, Z1
Dunstand-Guzmán, E1
Hallal-Calleros, C1
Hernández-Velázquez, VM1
Canales-Vargas, EJ1
Domínguez-Roldan, R1
Pedernera, M1
Peña-Chora, G1
Flores-Pérez, I1
Kim, MJ1
Han, C1
White, K1
Park, HJ1
Ding, D1
Boyd, K1
Rothenberger, C1
Bose, U1
Carmichael, P1
Linser, PJ1
Tanokura, M1
Salvi, R1
Someya, S1
Samuni, A1
Goldstein, S1
Divya, KP1
Dharuman, V1
Feng, J2
Qian, Y1
Cheng, Q1
Ma, H1
Ren, X1
Wei, Q1
Pan, W1
Guo, J1
Situ, B1
An, T1
Zheng, L1
Augusto, S1
Ratola, N1
Tarín-Carrasco, P1
Jiménez-Guerrero, P1
Turco, M1
Schuhmacher, M1
Costa, S1
Teixeira, JP1
Costa, C1
Syed, A1
Marraiki, N1
Al-Rashed, S1
Elgorban, AM1
Yassin, MT1
Chankhanittha, T1
Nanan, S1
Sorokina, KN1
Samoylova, YV1
Gromov, NV1
Ogorodnikova, OL1
Parmon, VN1
Ye, J2
Liao, W1
Zhang, P1
Nabi, M1
Cai, Y1
Li, F1
Alsbou, EM1
Omari, KW1
Adeosun, WA1
Asiri, AM1
Marwani, HM1
Barral, M1
Jemal-Turki, A1
Beuvon, F1
Soyer, P1
Camparo, P1
Cornud, F1
Atwater, BD1
Jones, WS1
Loring, Z1
Friedman, DJ1
Namburath, M1
Papirio, S1
Moscariello, C1
Di Costanzo, N1
Pirozzi, F1
Alappat, BJ1
Sreekrishnan, TR1
Volpin, F1
Woo, YC1
Kim, H2
Freguia, S1
Jeong, N1
Choi, JS1
Phuntsho, S1
Shon, HK1
Domínguez-Zambrano, E1
Pedraza-Chaverri, J1
López-Santos, AL1
Medina-Campos, ON1
Cruz-Rivera, C1
Bueno-Hernández, F1
Espinosa-Cuevas, A1
Bulavaitė, A1
Dalgediene, I1
Michailoviene, V1
Pleckaityte, M1
Sauerbier, P1
Köhler, R1
Renner, G1
Militz, H1
Nuzbrokh, Y1
Jauregui, R1
Oh, JK1
Moazami, G1
Sparrow, JR1
Tsang, SH1
Abdul Rahim, SA1
Dirkse, A1
Oudin, A1
Schuster, A1
Bohler, J1
Barthelemy, V1
Muller, A1
Vallar, L1
Janji, B1
Golebiewska, A1
Niclou, SP1
Wu, HB1
Weng, HY1
Zhao, XL1
Fu, WJ1
Niu, Q1
Ping, YF1
Wang, JM1
Yao, XH1
Bian, XW1
Zhang, C1
Xu, R1
Huang, B1
Chen, AJ1
Li, XG1
Jutten, B1
Keulers, TG1
Peeters, HJM1
Schaaf, MBE1
Savelkouls, KGM1
Clarijs, R1
Schijns, OEMG1
Teernstra, OPM1
Zonneveld, MI1
Colaris, RME1
Dubois, L1
Vooijs, MA1
Bussink, J1
Sotelo, J5
Theys, J1
Lammering, G1
Lohitesh, K1
Saini, H1
Srivastava, A1
Roy, A1
Chowdhury, R1
Ulasov, IV1
Lenz, G1
Lesniak, MS1
Shen, C3
Peng, F3
Yang, G1
Yin, Z2
Ma, J1
Zheng, Z4
Zhao, B3
Han, D1
Wang, K4
Zhong, C4
Hou, X3
Zhao, W2
Shu, M2
Gao, M1
Rojas-Puentes, LL1
Gonzalez-Pinedo, M1
Crismatt, A1
Ortega-Gomez, A1
Gamboa-Vignolle, C1
Nuñez-Gomez, R1
Dorantes-Gallareta, Y1
Arce-Salinas, C1
Arrieta, O1
Moon, JY1
Ahn, KS1
Cho, SK1
Levy, JM1
Thompson, JC1
Griesinger, AM2
Amani, V2
Donson, AM2
Birks, DK2
Morgan, MJ1
Mirsky, DM2
Handler, MH2
Foreman, NK3
Thorburn, A3
Bilger, A1
Bittner, MI1
Grosu, AL1
Wiedenmann, N1
Meyer, PT1
Firat, E1
Niedermann, G1
Weber, WA1
Milanović, D1
Wang, R1
Xiao, X1
Wang, PY1
Guan, Q1
Du, C1
Wang, XJ1
Mulcahy Levy, JM2
Zhang, W1
Cho, K1
Bi, Y2
Yang, Z1
Zou, H2
Roy, LO1
Poirier, MB1
Fortin, D1
Gao, D1
Shi, C2
Yan, Y1
Dai, S1
Qian, L1
Sun, L1
Gong, Z1
Sun, K1
Dai, Y1
Ye, H1
Chen, M1
Cao, F1
Zhan, R1
Zheng, X1
Zahedi, S1
Morin, A1
Davies, KD1
Aisner, DL1
Kleinschmidt-DeMasters, BK1
Fitzwalter, BE1
Goodall, ML1
Thorburn, J1
Hankinson, TC1
Green, AL1
Vibhakar, R1
Cheng, BC1
Chen, JT1
Yang, ST1
Chio, CC1
Liu, SH1
Chen, RM1
Saka, M1
Amano, T1
Kajiwara, K1
Yoshikawa, K1
Ideguchi, M1
Nomura, S1
Fujisawa, H1
Kato, S1
Fujii, M1
Ueno, K1
Hinoda, Y1
Suzuki, M1
Kim, EL1
Wüstenberg, R1
Rübsam, A1
Schmitz-Salue, C1
Warnecke, G1
Bücker, EM1
Pettkus, N1
Speidel, D1
Rohde, V1
Schulz-Schaeffer, W1
Deppert, W1
Giese, A1
Geng, Y1
Kohli, L1
Klocke, BJ1
Roth, KA1
Chin, BB1
Hjelemand, A1
Rich, J1
Lascola, C1
Storms, R1
McLendon, R1
Reiman, R1
Greer, KL1
Metzler, SD1
McDougald, D1
Dai, D1
Vaidyanathan, G1
Hu, YL1
DeLay, M1
Jahangiri, A1
Molinaro, AM1
Rose, SD1
Carbonell, WS1
Aghi, MK1
Briceño, E3
Reyes, S2
López-González, MA1
Gilbert, MR1
Toler, SM1
Noe, D1
Sharma, A1
Calderon, A1
Emrich, JG1
Hand, CM1
Dilling, TJ1
Class, R1
Bender, H1
Brady, LW1
Hagihara, N1
Walbridge, S1
Olson, AW1
Oldfield, EH1
Youle, RJ1
Rembao, D1
Campbell, FP1
Boyd, CM1
Lieberman, LM1
Beierwaltes, WH1
Varma, VM1

Clinical Trials (5)

Trial Overview

TrialPhaseEnrollmentStudy TypeStart DateStatus
Nitroglycerin Plus Whole Intracranial Radiotherapy for Brain Metastases in Non-small Cell Lung Cancer Patients: a Phase II Open Randomized Clinical Trial[NCT04338867]Phase 296 participants (Actual)Interventional2020-03-01Completed
Imaging Tumor Hypoxia With 18F-EF5 PET in Recurrent or Metastatic Clear Cell Ovarian Cancer[NCT01881451]5 participants (Actual)Observational2013-08-31Terminated (stopped due to Due to slow accrual and access to the study drug.)
Chloroquine as Adjuvant to the Treatment of Glioblastoma Multiforme, A Randomized Trial[NCT00224978]Phase 30 participants Interventional2005-01-31Completed
A Phase II Randomized Controlled Trial for the Addition of Chloroquine, an Autophagy Inhibitor, to Concurrent Chemoradiation for Newly Diagnosed Glioblastoma[NCT02432417]Phase 20 participants (Actual)Interventional2023-11-10Withdrawn (stopped due to The study was withdrawn due to a lack of funding. The researchers were unable to secure the necessary financial support to continue and complete the trial.)
A Phase I Trial for the Addition of Chloroquine, an Autophagy Inhibitor, to Concurrent Chemoradiation for Newly Diagnosed Glioblastoma[NCT02378532]Phase 113 participants (Actual)Interventional2016-08-31Completed
[information is prepared from clinicaltrials.gov, extracted Sep-2024]

Reviews

4 reviews available for chloroquine and Benign Neoplasms, Brain

ArticleYear
Psychological distress among health care professionals of the three COVID-19 most affected Regions in Cameroon: Prevalence and associated factors.
    Annales medico-psychologiques, 2021, Volume: 179, Issue:2

    Topics: 3' Untranslated Regions; 5'-Nucleotidase; A549 Cells; Accidental Falls; Acetylcholinesterase; Acryli

2021
Psychological distress among health care professionals of the three COVID-19 most affected Regions in Cameroon: Prevalence and associated factors.
    Annales medico-psychologiques, 2021, Volume: 179, Issue:2

    Topics: 3' Untranslated Regions; 5'-Nucleotidase; A549 Cells; Accidental Falls; Acetylcholinesterase; Acryli

2021
Psychological distress among health care professionals of the three COVID-19 most affected Regions in Cameroon: Prevalence and associated factors.
    Annales medico-psychologiques, 2021, Volume: 179, Issue:2

    Topics: 3' Untranslated Regions; 5'-Nucleotidase; A549 Cells; Accidental Falls; Acetylcholinesterase; Acryli

2021
Psychological distress among health care professionals of the three COVID-19 most affected Regions in Cameroon: Prevalence and associated factors.
    Annales medico-psychologiques, 2021, Volume: 179, Issue:2

    Topics: 3' Untranslated Regions; 5'-Nucleotidase; A549 Cells; Accidental Falls; Acetylcholinesterase; Acryli

2021
Autophagy in glioma cells: An identity crisis with a clinical perspective.
    Cancer letters, 2018, 08-01, Volume: 428

    Topics: Animals; Apoptosis; Autophagy; Autophagy-Related Proteins; Brain Neoplasms; Cell Survival; Chloroqui

2018
Targeting autophagy to sensitive glioma to temozolomide treatment.
    Journal of experimental & clinical cancer research : CR, 2016, Feb-02, Volume: 35

    Topics: Antineoplastic Combined Chemotherapy Protocols; Autophagy; Brain Neoplasms; Cell Line, Tumor; Cell S

2016
Retina and optic nerve.
    Archives of ophthalmology (Chicago, Ill. : 1960), 1968, Volume: 79, Issue:6

    Topics: Adult; Aged; Angiography; Animals; Blood Circulation; Brain Neoplasms; Carcinogens; Cats; Chloroquin

1968

Trials

5 trials available for chloroquine and Benign Neoplasms, Brain

ArticleYear
Psychological distress among health care professionals of the three COVID-19 most affected Regions in Cameroon: Prevalence and associated factors.
    Annales medico-psychologiques, 2021, Volume: 179, Issue:2

    Topics: 3' Untranslated Regions; 5'-Nucleotidase; A549 Cells; Accidental Falls; Acetylcholinesterase; Acryli

2021
Psychological distress among health care professionals of the three COVID-19 most affected Regions in Cameroon: Prevalence and associated factors.
    Annales medico-psychologiques, 2021, Volume: 179, Issue:2

    Topics: 3' Untranslated Regions; 5'-Nucleotidase; A549 Cells; Accidental Falls; Acetylcholinesterase; Acryli

2021
Psychological distress among health care professionals of the three COVID-19 most affected Regions in Cameroon: Prevalence and associated factors.
    Annales medico-psychologiques, 2021, Volume: 179, Issue:2

    Topics: 3' Untranslated Regions; 5'-Nucleotidase; A549 Cells; Accidental Falls; Acetylcholinesterase; Acryli

2021
Psychological distress among health care professionals of the three COVID-19 most affected Regions in Cameroon: Prevalence and associated factors.
    Annales medico-psychologiques, 2021, Volume: 179, Issue:2

    Topics: 3' Untranslated Regions; 5'-Nucleotidase; A549 Cells; Accidental Falls; Acetylcholinesterase; Acryli

2021
Phase II randomized, double-blind, placebo-controlled study of whole-brain irradiation with concomitant chloroquine for brain metastases.
    Radiation oncology (London, England), 2013, Sep-08, Volume: 8

    Topics: Adult; Aged; Brain Neoplasms; Chemoradiotherapy; Chloroquine; Cranial Irradiation; Disease-Free Surv

2013
Therapy of glioblastoma multiforme improved by the antimutagenic chloroquine.
    Neurosurgical focus, 2003, Feb-15, Volume: 14, Issue:2

    Topics: Adolescent; Adult; Antimutagenic Agents; Antineoplastic Agents; Brain Neoplasms; Chemotherapy, Adjuv

2003
Adding chloroquine to conventional treatment for glioblastoma multiforme: a randomized, double-blind, placebo-controlled trial.
    Annals of internal medicine, 2006, Mar-07, Volume: 144, Issue:5

    Topics: Adult; Antineoplastic Combined Chemotherapy Protocols; Brain Neoplasms; Carmustine; Chemotherapy, Ad

2006
Adding chloroquine to conventional treatment for glioblastoma multiforme: a randomized, double-blind, placebo-controlled trial.
    Annals of internal medicine, 2006, Mar-07, Volume: 144, Issue:5

    Topics: Adult; Antineoplastic Combined Chemotherapy Protocols; Brain Neoplasms; Carmustine; Chemotherapy, Ad

2006
Adding chloroquine to conventional treatment for glioblastoma multiforme: a randomized, double-blind, placebo-controlled trial.
    Annals of internal medicine, 2006, Mar-07, Volume: 144, Issue:5

    Topics: Adult; Antineoplastic Combined Chemotherapy Protocols; Brain Neoplasms; Carmustine; Chemotherapy, Ad

2006
Adding chloroquine to conventional treatment for glioblastoma multiforme: a randomized, double-blind, placebo-controlled trial.
    Annals of internal medicine, 2006, Mar-07, Volume: 144, Issue:5

    Topics: Adult; Antineoplastic Combined Chemotherapy Protocols; Brain Neoplasms; Carmustine; Chemotherapy, Ad

2006
Adding chloroquine to conventional treatment for glioblastoma multiforme: a randomized, double-blind, placebo-controlled trial.
    Annals of internal medicine, 2006, Mar-07, Volume: 144, Issue:5

    Topics: Adult; Antineoplastic Combined Chemotherapy Protocols; Brain Neoplasms; Carmustine; Chemotherapy, Ad

2006
Adding chloroquine to conventional treatment for glioblastoma multiforme: a randomized, double-blind, placebo-controlled trial.
    Annals of internal medicine, 2006, Mar-07, Volume: 144, Issue:5

    Topics: Adult; Antineoplastic Combined Chemotherapy Protocols; Brain Neoplasms; Carmustine; Chemotherapy, Ad

2006
Adding chloroquine to conventional treatment for glioblastoma multiforme: a randomized, double-blind, placebo-controlled trial.
    Annals of internal medicine, 2006, Mar-07, Volume: 144, Issue:5

    Topics: Adult; Antineoplastic Combined Chemotherapy Protocols; Brain Neoplasms; Carmustine; Chemotherapy, Ad

2006
Adding chloroquine to conventional treatment for glioblastoma multiforme: a randomized, double-blind, placebo-controlled trial.
    Annals of internal medicine, 2006, Mar-07, Volume: 144, Issue:5

    Topics: Adult; Antineoplastic Combined Chemotherapy Protocols; Brain Neoplasms; Carmustine; Chemotherapy, Ad

2006
Adding chloroquine to conventional treatment for glioblastoma multiforme: a randomized, double-blind, placebo-controlled trial.
    Annals of internal medicine, 2006, Mar-07, Volume: 144, Issue:5

    Topics: Adult; Antineoplastic Combined Chemotherapy Protocols; Brain Neoplasms; Carmustine; Chemotherapy, Ad

2006
Diagnostic efficacy of a radioiodinated chloroquine analog in patients with malignant melanoma.
    Journal of nuclear medicine : official publication, Society of Nuclear Medicine, 1970, Volume: 11, Issue:8

    Topics: Brain Neoplasms; Chloroquine; Clinical Trials as Topic; Eye Neoplasms; Humans; Iodine Radioisotopes;

1970

Other Studies

33 other studies available for chloroquine and Benign Neoplasms, Brain

ArticleYear
Using personalized medicine in gliomas: a genomic approach to diagnosis and overcoming treatment resistance in a case with pleomorphic xanthoastrocytoma.
    Journal of neurology, 2020, Volume: 267, Issue:3

    Topics: Antineoplastic Combined Chemotherapy Protocols; Astrocytoma; Brain Neoplasms; Chloroquine; Drug Resi

2020
Presumed Chloroquine Retinopathy With Short-term Therapy for Glioblastoma Multiforme.
    JAMA ophthalmology, 2020, 11-01, Volume: 138, Issue:11

    Topics: Adult; Antirheumatic Agents; Brain Neoplasms; Chloroquine; Female; Fluorescein Angiography; Fundus O

2020
Regulation of hypoxia-induced autophagy in glioblastoma involves ATG9A.
    British journal of cancer, 2017, Sep-05, Volume: 117, Issue:6

    Topics: Angiogenesis Inhibitors; Animals; Autophagy; Autophagy-Related Proteins; Bevacizumab; Brain Neoplasm

2017
Autophagy-induced KDR/VEGFR-2 activation promotes the formation of vasculogenic mimicry by glioma stem cells.
    Autophagy, 2017, Sep-02, Volume: 13, Issue:9

    Topics: Animals; Autophagy; Autophagy-Related Protein 5; Bevacizumab; Brain Neoplasms; Cell Line, Tumor; Cel

2017
TGF-β2 initiates autophagy via Smad and non-Smad pathway to promote glioma cells' invasion.
    Journal of experimental & clinical cancer research : CR, 2017, Nov-16, Volume: 36, Issue:1

    Topics: Animals; Autophagy; Brain Neoplasms; Cell Line, Tumor; Chloroquine; Epithelial-Mesenchymal Transitio

2017
EGFRvIII expression triggers a metabolic dependency and therapeutic vulnerability sensitive to autophagy inhibition.
    Autophagy, 2018, Volume: 14, Issue:2

    Topics: Animals; Autophagy; Brain Neoplasms; Cell Line, Tumor; Cell Proliferation; Chloroquine; Drug Resista

2018
Autophagy inhibition potentiates SAHA‑mediated apoptosis in glioblastoma cells by accumulation of damaged mitochondria.
    Oncology reports, 2018, Volume: 39, Issue:6

    Topics: Autophagosomes; Autophagy; Brain Neoplasms; Cell Line, Tumor; Cell Survival; Chloroquine; Drug Syner

2018
Nitazoxanide, an antiprotozoal drug, inhibits late-stage autophagy and promotes ING1-induced cell cycle arrest in glioblastoma.
    Cell death & disease, 2018, 10-09, Volume: 9, Issue:10

    Topics: Animals; Antiprotozoal Agents; Apoptosis; Autophagy; Brain Neoplasms; Cell Cycle Checkpoints; Cell L

2018
Oncogenic Ras is downregulated by ARHI and induces autophagy by Ras/AKT/mTOR pathway in glioblastoma.
    BMC cancer, 2019, May-14, Volume: 19, Issue:1

    Topics: Animals; Autophagy; Brain Neoplasms; Cell Line, Tumor; Chloroquine; Down-Regulation; Gene Expression

2019
Quercetin induces mitochondrial mediated apoptosis and protective autophagy in human glioblastoma U373MG cells.
    Oxidative medicine and cellular longevity, 2013, Volume: 2013

    Topics: Apoptosis; Autophagy; Brain Neoplasms; Cell Count; Cell Line, Tumor; Cell Proliferation; Chloroquine

2013
Autophagy inhibition improves chemosensitivity in BRAF(V600E) brain tumors.
    Cancer discovery, 2014, Volume: 4, Issue:7

    Topics: Antineoplastic Agents; Autophagy; Brain Neoplasms; Cell Line, Tumor; Cell Proliferation; Central Ner

2014
FET-PET-based reirradiation and chloroquine in patients with recurrent glioblastoma: first tolerability and feasibility results.
    Strahlentherapie und Onkologie : Organ der Deutschen Rontgengesellschaft ... [et al], 2014, Volume: 190, Issue:10

    Topics: Adult; Brain Neoplasms; Chloroquine; Feasibility Studies; Female; Glioblastoma; Humans; Male; Middle

2014
Stimulation of autophagic activity in human glioma cells by anti-proliferative ardipusilloside I isolated from Ardisia pusilla.
    Life sciences, 2014, Aug-06, Volume: 110, Issue:1

    Topics: Antineoplastic Agents, Phytogenic; Apoptosis; Apoptosis Regulatory Proteins; Ardisia; Autophagy; Bec

2014
Using BRAF(V600E) as a marker of autophagy dependence in pediatric brain tumors.
    Autophagy, 2014, Volume: 10, Issue:11

    Topics: Antineoplastic Agents; Autophagy; Brain Neoplasms; Brain Stem; Central Nervous System Neoplasms; Chi

2014
Impact of autophagy inhibition at different stages on cytotoxic effect of autophagy inducer in glioblastoma cells.
    Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology, 2015, Volume: 35, Issue:4

    Topics: Adenine; Antineoplastic Agents; Apoptosis; Apoptosis Regulatory Proteins; Arsenic Trioxide; Arsenica

2015
Chloroquine inhibits the malignant phenotype of glioblastoma partially by suppressing TGF-beta.
    Investigational new drugs, 2015, Volume: 33, Issue:5

    Topics: Brain Neoplasms; Cell Cycle; Cell Death; Cell Line, Tumor; Cell Proliferation; Chemoradiotherapy; Ch

2015
Inhibition of autophagy induced by quercetin at a late stage enhances cytotoxic effects on glioma cells.
    Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine, 2016, Volume: 37, Issue:3

    Topics: Adenine; Animals; Autophagy; Brain Neoplasms; Cell Line, Tumor; Cell Proliferation; Chloroquine; Gli

2016
Inhibition of Autophagy by Chloroquine Enhances the Antitumor Efficacy of Sorafenib in Glioblastoma.
    Cellular and molecular neurobiology, 2016, Volume: 36, Issue:7

    Topics: Animals; Apoptosis; Autophagy; Brain Neoplasms; Cell Line, Tumor; Cell Proliferation; Cell Survival;

2016
Chloroquine, an autophagy inhibitor, potentiates the radiosensitivity of glioma initiating cells by inhibiting autophagy and activating apoptosis.
    BMC neurology, 2016, Sep-20, Volume: 16, Issue:1

    Topics: Apoptosis; Autophagy; Brain Neoplasms; Cell Line, Tumor; Chloroquine; Dose-Response Relationship, Dr

2016
Autophagy inhibition overcomes multiple mechanisms of resistance to BRAF inhibition in brain tumors.
    eLife, 2017, 01-17, Volume: 6

    Topics: Antineoplastic Agents; Autophagy; Brain Neoplasms; Cell Line, Tumor; Cell Proliferation; Cell Surviv

2017
Cobalt chloride treatment induces autophagic apoptosis in human glioma cells via a p53-dependent pathway.
    International journal of oncology, 2017, Volume: 50, Issue:3

    Topics: Adenine; Antimutagenic Agents; Apoptosis; Autophagy; Brain Neoplasms; Caspase 3; Cell Hypoxia; Cell

2017
Vaccine therapy with dendritic cells transfected with Il13ra2 mRNA for glioma in mice.
    Journal of neurosurgery, 2010, Volume: 113, Issue:2

    Topics: Animals; Bone Marrow Cells; Brain Neoplasms; Cancer Vaccines; Cell Line, Tumor; Chloroquine; Dendrit

2010
Chloroquine activates the p53 pathway and induces apoptosis in human glioma cells.
    Neuro-oncology, 2010, Volume: 12, Issue:4

    Topics: Animals; Antimalarials; Apoptosis; Blotting, Western; Brain Neoplasms; Cell Proliferation; Chloroqui

2010
Chloroquine-induced autophagic vacuole accumulation and cell death in glioma cells is p53 independent.
    Neuro-oncology, 2010, Volume: 12, Issue:5

    Topics: Antineoplastic Agents; Autophagy; Blotting, Western; Brain Neoplasms; Cell Line, Tumor; Chloroquine;

2010
Synthesis and preliminary evaluation of n.c.a. iodoquine: a novel radiotracer with high uptake in cells with high ALDH1 expression.
    Current radiopharmaceuticals, 2012, Volume: 5, Issue:1

    Topics: Aldehyde Dehydrogenase 1 Family; Animals; Blotting, Western; Brain Neoplasms; Cell Line, Tumor; Chlo

2012
Hypoxia-induced autophagy promotes tumor cell survival and adaptation to antiangiogenic treatment in glioblastoma.
    Cancer research, 2012, Apr-01, Volume: 72, Issue:7

    Topics: Adaptation, Physiological; AMP-Activated Protein Kinases; Angiogenesis Inhibitors; Animals; Antibodi

2012
Summaries for patients. Adding chloroquine to conventional chemotherapy and radiotherapy for glioblastoma multiforme.
    Annals of internal medicine, 2006, Mar-07, Volume: 144, Issue:5

    Topics: Adult; Antineoplastic Combined Chemotherapy Protocols; Brain Neoplasms; Carmustine; Chemotherapy, Ad

2006
New treatments for malignant gliomas: careful evaluation and cautious optimism required.
    Annals of internal medicine, 2006, Mar-07, Volume: 144, Issue:5

    Topics: Antineoplastic Combined Chemotherapy Protocols; Brain Neoplasms; Chemotherapy, Adjuvant; Chloroquine

2006
Selective enhancement of cellular oxidative stress by chloroquine: implications for the treatment of glioblastoma multiforme.
    Neurosurgical focus, 2006, Dec-15, Volume: 21, Issue:6

    Topics: Animals; Artemisinins; Brain Neoplasms; Chloroquine; Cyclic N-Oxides; Glioblastoma; Hemin; Humans; I

2006
Institutional experience with chloroquine as an adjuvant to the therapy for glioblastoma multiforme.
    Surgical neurology, 2007, Volume: 67, Issue:4

    Topics: Adult; Antimalarials; Antineoplastic Agents; Brain Neoplasms; Chemotherapy, Adjuvant; Chloroquine; F

2007
Biodistribution of 125I-MAb 425 in a human glioma xenograft model: effect of chloroquine.
    Hybridoma, 1997, Volume: 16, Issue:1

    Topics: Animals; Antibodies, Monoclonal; Brain Neoplasms; Chloroquine; Disease Models, Animal; ErbB Receptor

1997
Vascular protection by chloroquine during brain tumor therapy with Tf-CRM107.
    Cancer research, 2000, Jan-15, Volume: 60, Issue:2

    Topics: Animals; Antibodies, Monoclonal; Bacterial Toxins; Brain Neoplasms; Cerebrovascular Circulation; Chl

2000
The antimalarials quinacrine and chloroquine potentiate the transplacental carcinogenic effect of ethylnitrosourea on ependymal cells.
    Brain tumor pathology, 2001, Volume: 18, Issue:2

    Topics: Animals; Antimalarials; Brain Neoplasms; Carcinogens; Chloroquine; Drug Synergism; Ependyma; Ependym

2001