chlorophyll-a and Head-and-Neck-Neoplasms

chlorophyll-a has been researched along with Head-and-Neck-Neoplasms* in 11 studies

Trials

1 trial(s) available for chlorophyll-a and Head-and-Neck-Neoplasms

ArticleYear
Adjuvant intraoperative photodynamic therapy in head and neck cancer.
    JAMA otolaryngology-- head & neck surgery, 2013, Volume: 139, Issue:7

    There is an immediate need to develop local intraoperative adjuvant treatment strategies to improve outcomes in patients with cancer who undergo head and neck surgery.. To determine the safety of photodynamic therapy with 2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-a (HPPH) in combination with surgery in patients with head and neck squamous cell carcinoma.. Nonrandomized, single-arm, single-site, phase 1 study at a comprehensive cancer center among 16 adult patients (median age, 65 years) with biopsy-proved primary or recurrent resectable head and neck squamous cell carcinoma.. Intravenous injection of HPPH (4.0 mg/m2), followed by activation with 665-nm laser light in the surgical bed immediately after tumor resection.. Adverse events and highest laser light dose.. Fifteen patients received the full course of treatment, and 1 patient received HPPH without intraoperative laser light because of an unrelated myocardial infarction. Disease sites included larynx (7 patients), oral cavity (6 patients), skin (1 patient), ear canal (1 patient), and oropharynx (1 patient, who received HPPH only). The most frequent adverse events related to photodynamic therapy were mild to moderate edema (9 patients) and pain (3 patients). One patient developed a grade 3 fistula after salvage laryngectomy, and another patient developed a grade 3 wound infection and mandibular fracture. Phototoxicity reactions included 1 moderate photophobia and 2 mild to moderate skin burns (2 due to operating room spotlights and 1 due to the pulse oximeter). The highest laser light dose was 75 J/cm2.. The adjuvant use of HPPH-photodynamic therapy and surgery for head and neck squamous cell carcinoma seems safe and deserves further study.. clinicaltrials.gov Identifier: NCT00470496.

    Topics: Aged; Carcinoma, Squamous Cell; Chemotherapy, Adjuvant; Chlorophyll; Female; Head and Neck Neoplasms; Humans; Intraoperative Care; Lasers; Male; Photochemotherapy; Treatment Outcome

2013

Other Studies

10 other study(ies) available for chlorophyll-a and Head-and-Neck-Neoplasms

ArticleYear
Tumor cell-specific retention of photosensitizers determines the outcome of photodynamic therapy for head and neck cancer.
    Journal of photochemistry and photobiology. B, Biology, 2022, Volume: 234

    Pheophorbide-based photosensitizers have demonstrated tumor cell-specific retention. The lead compound 3-[1'-hexyloxyethyl]-2-devinylpyropheophorbide-a (HPPH) in a clinical trial for photodynamic therapy of head and neck cancer lesions indicated a complete response in 80% of patients. The question arises whether the partial response in 20% of patients is due to inefficient retention of photosensitizers by tumor cells and, if so, can the photosensitizer preference of individual cancer cases be identified prior to photodynamic therapy. This study determined the specificity of head and neck cancer cells and tumor tissues for the uptake and retention of diffusible pheophorbides differing in peripheral groups on the macrocycle that contribute to cellular binding. The relationship between photosensitizer level and light-mediated photoreaction was characterized to identify markers for predicting the effectiveness of photodynamic therapy in situ. The experimental models were stromal and epithelial cells isolated from head and neck tumor samples and integrated into monotypic tissue cultures, reconstituted three-dimensional co-cultures, and xenografts. Tumor cell-specific photosensitizer retention patterns were identified, and a procedure was developed to allow the diagnostic evaluation of HPPH binding by tumor cells in individual cancer cases. The findings of this study may assist in designing conditions for photosensitizer application and photodynamic therapy of head and neck cancer lesions optimized for each patient's case.

    Topics: Chlorophyll; Head and Neck Neoplasms; Humans; Photochemotherapy; Photosensitizing Agents

2022
    Journal of applied social psychology, 2021, Volume: 51, Issue:5

    Topics: Adult; Aged; Aged, 80 and over; Air Pollutants; Air Pollution; Animals; Anti-Bacterial Agents; Anti-Infective Agents; Anti-Inflammatory Agents; Antibodies, Monoclonal, Humanized; Antigens, Surface; Antineoplastic Agents; Antioxidants; Antiviral Agents; Aporphines; Atherosclerosis; Benzoyl Peroxide; beta Catenin; Biofilms; Biomarkers; Brain; Cannabis; Carcinoma, Squamous Cell; Case-Control Studies; CD4 Lymphocyte Count; CD4-Positive T-Lymphocytes; CD8-Positive T-Lymphocytes; Cell Line; Cell Line, Tumor; Cell Movement; Cell Proliferation; Cell Survival; Child; China; Chlorides; Chlorophyll; Cholesterol, LDL; Coinfection; Corylus; Cross-Sectional Studies; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Developmental Disabilities; Disease Models, Animal; Drug Evaluation, Preclinical; Drug Screening Assays, Antitumor; Electroencephalography; Environmental Exposure; Enzyme Inhibitors; Epilepsy, Generalized; Ethnicity; Female; Fertilization in Vitro; Fluorescent Dyes; Follow-Up Studies; Forecasting; Glutamate Carboxypeptidase II; Glycine; Half-Life; Head and Neck Neoplasms; Health Communication; Heart Ventricles; Hepacivirus; Hepatitis C; Heterosexuality; HIV Infections; Humans; Hypercholesterolemia; Immunoassay; Inhalation Exposure; Isocitrate Dehydrogenase; Laryngeal Neoplasms; Ligands; Light; Lipopolysaccharide Receptors; Liver Cirrhosis; Lung; Lung Neoplasms; Magnetic Resonance Imaging, Cine; Male; Maternal Age; Mechanical Phenomena; Mice; Mice, Nude; Mice, SCID; Microglia; MicroRNAs; Microscopy, Fluorescence; Microsomes, Liver; Middle Aged; Minority Groups; Mitochondrial Membrane Transport Proteins; Models, Biological; Molecular Structure; Molecular Weight; Monte Carlo Method; Muscle Hypotonia; Mutagenesis, Site-Directed; Mutation, Missense; Natriuretic Peptide, Brain; Neoplasms; Nickel; Nitric Oxide; Optical Imaging; Oxides; Particle Size; Particulate Matter; PCSK9 Inhibitors; Peptide Fragments; Phenotype; Photochemotherapy; Photosensitizing Agents; Phytochemicals; Piper; Placenta Growth Factor; Plant Extracts; Plant Leaves; Plant Stems; Platinum; Point-of-Care Testing; Population Surveillance; Postpartum Period; Pregnancy; Pregnancy, Twin; Prevalence; Prospective Studies; Prostatic Neoplasms; Pseudomonas aeruginosa; Pyridines; Pyridones; Racial Groups; Rats; Respiratory Physiological Phenomena; Retrospective Studies; Risk Factors; RNA, Long Noncoding; Semiconductors; Sexual and Gender Minorities; Sexual Behavior; Social Media; Sodium; Solubility; Stereoisomerism; Stochastic Processes; Structure-Activity Relationship; Substance-Related Disorders; Sustained Virologic Response; Sweat; Temperature; Time Factors; Tissue Distribution; Titanium; Transplantation, Heterologous; Tumor Cells, Cultured; Tungsten; Tyramine; United States; Up-Regulation; Ventricular Dysfunction, Left; Ventricular Function, Left; Veterans; Xenograft Model Antitumor Assays; Young Adult

2021
A bioactivatable self-quenched nanogel for targeted photodynamic therapy.
    Biomaterials science, 2019, Dec-01, Volume: 7, Issue:12

    Photodynamic therapy has attracted significant attention due to its localized treatment advantage. However, the non-specific distribution of photosensitizers and the subsequent potential toxicity caused by sunshine exposure hinder its wide adoption in cancer treatment. To minimize these unwanted effects and improve its efficacy, we developed a bioactivatable self-quenched nanogel, which remains in its inactive state in healthy tissues. Anti-EGFR Affibody decorated nanogels can effectively target head and neck cancer and release activated pheophorbide A in a reducing environment, such as in the tumor stroma and cytoplasm. Consequently, the EGFR targeted nanogel coupled with NIR irradiation alleviates tumor burden by 94.5% while not inducing systemic toxicity.

    Topics: Animals; Cell Line, Tumor; Cell Proliferation; Cell Survival; Chlorophyll; ErbB Receptors; Head and Neck Neoplasms; HeLa Cells; Humans; Ligands; Mice; Molecular Targeted Therapy; Nanogels; Photochemotherapy; Radiation-Sensitizing Agents; Squamous Cell Carcinoma of Head and Neck; Xenograft Model Antitumor Assays

2019
Structural and Epimeric Isomers of HPPH [3-Devinyl 3-{1-(1-hexyloxy) ethyl}pyropheophorbide-a]: Effects on Uptake and Photodynamic Therapy of Cancer.
    ACS chemical biology, 2017, 04-21, Volume: 12, Issue:4

    The tetrapyrrole structure of porphyrins used as photosentizing agents is thought to determine uptake and retention by malignant epithelial cancer cells. To assess the contribution of the oxidized state of individual rings to these cellular processes, bacteriochlorophyll a was converted into the ring "D" reduced 3-devinyl-3-[1-(1-hexyloxy)ethyl]pyropheophorbide-a (HPPH) and the corresponding ring "B" reduced isomer (iso-HPPH). The carboxylic acid analogs of both ring "B" and ring "D" reduced isomers showed several-fold higher accumulation into the mitochondria and endoplasmic reticulum by primary culture of human lung and head and neck cancer cells than the corresponding methyl ester analogs that localize primarily to granular vesicles and to a lesser extent to mitochondria. However, long-term cellular retention of these compounds exhibited an inverse relationship with tumor cells generally retaining better the methyl-ester derivatives. In vivo distribution and tumor uptake was evaluated in the isogenic model of BALB/c mice bearing Colon26 tumors using the respective

    Topics: Animals; Cell Line, Tumor; Chlorophyll; Head and Neck Neoplasms; Humans; Isomerism; Lung Neoplasms; Mice; Mice, Inbred BALB C; Molecular Structure; Photochemotherapy; Photosensitizing Agents

2017
[Apoptosis and migration suppression of HN-3 human laryngeal squamous cancer cells induced by photo-activation of 9-hydroxypheophorbide-α].
    Lin chuang er bi yan hou tou jing wai ke za zhi = Journal of clinical otorhinolaryngology, head, and neck surgery, 2015, Volume: 29, Issue:15

    To investigate the effect and potential mechanisms about apoptosis induction and migration suppression of photodynamic therapy with a new photosensitizer, 9-hydroxypheophorbide-α (9-HPbD), and diode laser on HN-3 human laryngeal squamous cancer cells.. The attached HN-3 cancer cells were photosesitized with 0.29 μg/ml and 0.59 μg/ml 9-HPbD for 6 h and irradiated by 664 nm diode laser for 15 min at an energy density of 2.0 J/cm for activating 9-HPbD. Wound healing assay and photographing was respectively performed immediately after laser irradiation. Photographing focusing on the same location was repeated 12 h, 24 h and 36 h after PDT and cells migration distance counted respectively. H2DCFDA staining was used to assess accumulation of reactive oxygen series (ROS) 1 h after PDT. MTT assay, Hoechst33342/PI double staining, western blotting were respectively performed to assess cellular viability, apoptosis and the expression of Enos, p-c-Jun, EGFR.. Phototoxicity and apoptosis on HN-3 cells induced by 9-HPbD-PDT was exhibited in a dose-related manner. Neither 9-HPbD alone nor laser alone was cytotoxic to HN-3 cells. Generation of ROS was initiated immediately after PDT. The apoptotic cells, marked with condensed/fragmented blue or pink nuclei, and up-regulated expression of eNOS, p-c-Jun were subsequently induced 24 h after PDT. Coupled with a down-regulated expression of EGFR, a photosensitizer dose-ralated cell migration suppression was initiated by PDT. After pretreatment of GSH or ascorbic acid, a kind of antioxidant, the efficacy of PDT-induced apoptosis and migration suppression was partially inhibited.. Activation of p-c-Jun, eNOS and down-regulated expression of EGFR may respectively involve in the apoptosis induction and cell migration suppression after 9-HPbD-PDT. Generation of ROS may play an important role in the course of apoptosis induction and migration suppression of HN-3 cells initiated by 9-HPbD-PDT.

    Topics: Apoptosis; Carcinoma, Squamous Cell; Cell Line, Tumor; Cell Movement; Cell Survival; Chlorophyll; Head and Neck Neoplasms; Humans; Laryngeal Neoplasms; Lasers; Photochemotherapy; Photosensitizing Agents; Squamous Cell Carcinoma of Head and Neck

2015
The apoptosis pathway of photodynamic therapy using 9-HpbD-a in AMC-HN3 human head and neck cancer cell line and in vivo.
    General physiology and biophysics, 2013, Volume: 32, Issue:3

    9-Hydroxypheophorbide-a (9-HpbD-a), a new photosensitizer was extracted from the green alga Spirulina platensis. The anticancer effects of photodynamic therapy (PDT) treatment using 9-HpbD-a against human head and neck cancer cell HN3 and in vivo mice model were investigated. Cells were incubated with 9-HpbD-a for at least 6 hours or more followed by the laser irradiation. Cytotoxicity of 9-HpbD-a against HN3 cell was determined using the MTT assay, propidium iodide and Hoechst 33342 staining and transmission electron microscopy (TEM). To determine the mechanism of cell death, Western blot analysis was performed. The antitumor effect was confirmed in a cancer cell xenograft nude mouse model by photodynamic therapy (PDT) using 9-HpbD-a. For normal control and the 9-HpbD-a only treated group, tumor tissues showed continuous tumor growth (100%). For laser only treated experimental group, 3 treatments showed no remission (75.0%), and was one recurrence (25.0%). Out of 16 tumors in the fourth group of photodynamic treatment, 10 cured (62.5%), 4 recurrence (25.0%), and 2 did not heal (12.5%) were confirmed. PDT using a 9-HpbD-a and 665 nm diode laser showed significant antitumor effects. Thus PDT using 9-HpbD-a can be a useful new treatment method in the treatment of cancer in the future.

    Topics: Animals; Apoptosis; Cell Line, Tumor; Chlorophyll; Head and Neck Neoplasms; Humans; Mice; Necrosis; Photochemotherapy; Photosensitizing Agents; Xenograft Model Antitumor Assays

2013
Monitoring photobleaching and hemodynamic responses to HPPH-mediated photodynamic therapy of head and neck cancer: a case report.
    Optics express, 2010, Jul-05, Volume: 18, Issue:14

    We present initial results obtained during the course of a Phase I clinical trial of 2-1[hexyloxyethyl]-2-devinylpyropheophorbide-a (HPPH)-mediated photo-dynamic therapy (PDT) in a head and neck cancer patient. We quantified blood flow, oxygenation and HPPH drug photobleaching before and after therapeutic light treatment by utilizing fast, non-invasive diffuse optical methods. Our results showed that HPPH-PDT induced significant drug photobleaching, and reduction in blood flow and oxygenation suggesting significant vascular and cellular reaction. These changes were accompanied by cross-linking of the signal transducer and activator of transcription 3 (STAT3), a molecular measure for the oxidative photoreaction. These preliminary results suggest diffuse optical spectroscopies permit non-invasive monitoring of PDT in clinical settings of head and neck cancer patients.

    Topics: Chlorophyll; Cross-Linking Reagents; Fiber Optic Technology; Head and Neck Neoplasms; Hemodynamics; Humans; Male; Photobleaching; Photochemotherapy; STAT3 Transcription Factor

2010
Enhanced apoptotic effect of combined modality of 9-hydroxypheophorbide alpha-mediated photodynamic therapy and carboplatin on AMC-HN-3 human head and neck cancer cells.
    Oncology reports, 2009, Volume: 21, Issue:2

    Photodynamic therapy (PDT) has been developed as an effective treatment for malignant disease. Carboplatin (CBDCA), a less nephrotoxic analog of cisdiamminedichloroplatinum (cisplatin), has been widely used for the treatment of multiple malignancies. In this study, we investigated the cytotoxic and apoptotic effect of combined modality of 9-hydroxypheophorbide alpha (9-HPbD)-mediated PDT and CBDCA on AMC-HN-3 human head and neck cancer cell line in vitro. The attached AMC-HN-3 cells were incubated with CBDCA (0.04 mg/ml) for 24 h at 37 degrees C and followed by photosensitization with 9-HPbD for 6 h and laser irradiation with 670 nm diode laser at an intensity of 2.0 J/cm(2) for activating 9-HPbD for 15 min. Then MTT reduction assay and Hoechst 33342 and propidium iodide (PI) double staining were used respectively to measure the cytotoxicity and nuclear morphology at 24 h after PDT. Expression of caspase-3, -9 and poly(ADP-ribose) polymerase (PARP) was detected at 0, 3, 6 and 12 h after irradiation through Western blotting techniques. Compared with PDT and CBDCA alone groups, there was more cytotoxicity and enhanced apoptotic cell death in combination groups. The peaked expression of cleaved form of caspase-3, -9 and PARP occurred approximately 3 h after PDT. There was stronger expression of cleaved caspase-3, -9 and PARP in combination groups than that in PDT or CBDCA alone groups. This study demonstrates that the combined modality resulted in enhanced apoptotic cell death as well as cytotoxic effect on AMC-HN-3 cells in vitro, which suggests the feasibility of combined modality and the possibility of reducing the effective dosage of 9-HPbD and CBDCA and lowering the side effects on normal cells.

    Topics: Antineoplastic Agents; Apoptosis; Blotting, Western; Carboplatin; Caspase 3; Cell Line, Tumor; Chlorophyll; Combined Modality Therapy; Head and Neck Neoplasms; Humans; Photochemotherapy; Poly(ADP-ribose) Polymerases

2009
Photodynamic therapy with 9-hydroxypheophorbide alpha on AMC-HN-3 human head and neck cancer cells: induction of apoptosis via photoactivation of mitochondria and endoplasmic reticulum.
    Cancer biology & therapy, 2009, Volume: 8, Issue:14

    Skin phototoxicity is one of the main side effects of photodynamic therapy (PDT). To overcome this problem, some new photosensitizers have been developed with longer absorbance wavelengths and shorter half-life in the body. In this study, we investigated the mechanism of PDT mediated by a new chlorophyll derivative photosensitizer, 9-hydroxypheophorbide alpha (9-HPbD), on AMC-HN-3 cancer cells. Phototoxicity and apoptosis on AMC-HN-3 cells induced by 9-HPbD was exhibited in a time- and dose-dependent manner. Mitochondria and endoplasmic reticulum (ER) were observed as preferential sites of 9-HPbD accumulation. Photoactivation of 9-HPbD-loaded AMC-HN-3 cells led to a rapid generation of reactive oxygen species (ROS) at 30 min, followed by a loss of mitochondrial membrane potential (MMP) at 2 h, translocation of apoptosis-inducing factor (AIF) at 2 h, and the release of cytochrome c at 3 h following PDT. Caspase-12, an important caspase involved in ER-induced apoptosis, and C/EBP homologous protein (CHOP), an ER stress inducible transcription factor, were also upregulated after PDT (3-12 h and 6-12 h, respectively). Subsequently, activation of caspase-9 at 6 h, caspase-3 and PARP at 12 h also occurred in PDT-treated AMC-HN-3 cells. The above observations demonstrate that both mitochondria and ER serve not only as the sites of sensitizer binding, but also the subcellular targets of 9-HPbD-PDT, effective activation of which is responsible for 9-HPbD PDT-induced apoptosis in AMC-HN-3 cells.

    Topics: Apoptosis; Carcinoma, Squamous Cell; Cell Line, Tumor; Chlorophyll; Drug Screening Assays, Antitumor; Endoplasmic Reticulum; Enzyme Activation; Head and Neck Neoplasms; Humans; Lasers; Lipid Peroxidation; Mitochondria; Neoplasm Proteins; Oxidative Stress; Photochemotherapy; Protein Transport; Radiation-Sensitizing Agents; Reactive Oxygen Species

2009
Chlorophyll solution in deodorization of advanced carcinoma of head and neck.
    Journal of the American Medical Association, 1955, Apr-09, Volume: 157, Issue:15

    Topics: Chlorophyll; Head and Neck Neoplasms; Humans; Neck

1955