chlorogenic-acid has been researched along with Inflammation* in 5 studies
5 other study(ies) available for chlorogenic-acid and Inflammation
Article | Year |
---|---|
3,4,5-O-tricaffeoylquinic acid with anti-radiation activity suppresses LPS-induced NLRP3 inflammasome activation via autophagy in THP-1 macrophages.
Topics: Animals; Autophagy; Caspase 1; Inflammasomes; Inflammation; Leukocytes, Mononuclear; Lipopolysaccharides; Macrophages; Mice; NF-kappa B; NLR Family, Pyrin Domain-Containing 3 Protein; Quinic Acid | 2022 |
Anti-inflammatory components of Chrysanthemum indicum flowers.
One new octulosonic acid derivative, chrysannol A (1), along with 17 known compounds (2-18), were isolated from Chrysanthemum indicum flowers. Their structures were determined from 1D NMR, 2D NMR, HR-ESI-MS spectral data, and comparisons with previous reports. The effects of these compounds on lipopolysaccharide (LPS)-induced nitric oxide (NO) and tumor necrosis factor alpha (TNF-α) production by RAW 264.7 cells were investigated. Compound 8 showed the highest inhibition of NO production of 46.09% at a concentration of 10.0μM. Compounds 7, 10, 11, and 16 inhibited TNF-α secretion at all concentration tested (0.4, 2.0, and 10.0μM), with inhibition values ranging from 22.27% to 33.13%. In addition, compound 8 and 9 decrease COX-2 and iNOS protein on Western blot analysis in dose dependent manner. Topics: Anti-Inflammatory Agents; Cells, Cultured; Chrysanthemum; Cyclooxygenase 2; Flavonoids; Flowers; Inflammation; Lipopolysaccharides; Macrophages; Magnetic Resonance Spectroscopy; Models, Molecular; Molecular Structure; Nitric Oxide; Nitric Oxide Synthase Type II; Phytotherapy; Plant Extracts; Spectrometry, Mass, Electrospray Ionization; Structure-Activity Relationship; Tumor Necrosis Factor-alpha | 2015 |
Alkyl and phenolic glycosides from Saussurea stella.
One alkyl glycoside, saussurostelloside A (1), two phenolic glycosides, saussurostellosides B1 (2) and B2 (3), and 27 known compounds, including eleven flavonoids, seven phenolics, six lignans, one neolignan, one phenethyl glucoside and one fatty acid, were isolated from an ethanol extract of Saussurea stella (Asteraceae). Their structures were elucidated by NMR, MS, UV, and IR spectroscopic analysis. Of the known compounds, (+)-medioresinol-di-O-β-D-glucoside (7), picraquassioside C (10), and diosmetin-3'-O-β-D-glucoside (27) were isolated from the Asteraceae family for the first time, while (+)-pinoresinol-di-O-β-D-glucoside (6), di-O-methylcrenatin (11), protocatechuic acid (14), 1,5-di-O-caffeoylquinic acid (17), formononetin (28), and phenethyl glucoside (29) were isolated from the Saussurea genus for the first time. The anti-inflammatory activities of three new compounds (1-3), five lignans ((-)-arctiin (4), (+)-pinoresinol-4-O-β-D-glucoside (5), (+)-pinoresinol-di-O-β-D-glucoside (6), (+)-medioresinol-di-O-β-D-glucoside (7) and (+)-syringaresinol-4-O-β-D-glucoside (8)), one neolignan (picraquassioside C (10)), and one phenolic glycoside (di-O-methylcrenatin (11)) were evaluated by testing their inhibition of the release of β-glucuronidase from PAF-stimulated neutrophils. Only compound 5 showed moderate inhibition of the release of β-glucuronidase, with an inhibition ratio of 39.1%. Topics: Animals; Anti-Inflammatory Agents; Coumaric Acids; Disaccharides; Female; Flavonoids; Furans; Glucosides; Glucuronidase; Glycosides; Hydroxybenzoates; Inflammation; Isoflavones; Lignans; Male; Molecular Structure; Neutrophils; Phytotherapy; Plant Extracts; Platelet Activating Factor; Quinic Acid; Rats, Wistar; Saussurea | 2013 |
Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
This protocol describes microsphere-based protease assays for use in flow cytometry and high-throughput screening. This platform measures a loss of fluorescence from the surface of a microsphere due to the cleavage of an attached fluorescent protease substrate by a suitable protease enzyme. The assay format can be adapted to any site or protein-specific protease of interest and results can be measured in both real time and as endpoint fluorescence assays on a flow cytometer. Endpoint assays are easily adapted to microplate format for flow cytometry high-throughput analysis and inhibitor screening. Topics: Animals; Biotinylation; Flow Cytometry; Fluorescence Resonance Energy Transfer; Green Fluorescent Proteins; High-Throughput Screening Assays; Humans; Inflammation; Kinetics; Microspheres; Peptide Hydrolases; Peptides; Reproducibility of Results; Temperature | 2010 |
Effect of total phenolics from Laggera alata on acute and chronic inflammation models.
The anti-inflammatory effect of total phenolics from Laggera alata (TPLA) was evaluated with various in vivo models of both acute and chronic inflammations. In the acute inflammation tests, TPLA inhibited significantly xylene-induced mouse ear oedema, carrageenan-induced rat paw oedema and acetic acid-induced mouse vascular permeability. In the carrageenan-induced rat pleurisy model, TPLA significantly suppressed inflammatory exudate and leukocyte migration, reduced the serum levels of lysozyme (LZM) and malondialdehyde (MDA), increased the serum levels of superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX), and also decreased the contents of total protein, nitric oxide (NO) and prostaglandin E(2) (PGE(2)) in the pleural exudates. In the chronic inflammation experiment, TPLA inhibited significantly cotton pellet-induced rat granuloma. These results indicated that TPLA possesses potent anti-inflammatory activity on acute and chronic inflammation models. Its anti-inflammatory mechanisms are probably associated with the inhibition of prostaglandin formation, the influence on the antioxidant systems, and the suppression of LZM release. Furthermore, the total phenolic content of Laggera alata and its main component type was quantified, and its principle components were isolated and authenticated. Acute toxicity studies revealed that TPLA up to an oral dose of 8.5 g/kg body weight was almost nontoxic in mice. Topics: Acute Disease; Animals; Asteraceae; Capillary Permeability; Carrageenan; Chronic Disease; Dexamethasone; Ear, External; Edema; Glutathione Peroxidase; Inflammation; Male; Malondialdehyde; Mice; Mice, Inbred ICR; Muramidase; Nitric Oxide; Plant Extracts; Pleurisy; Quinic Acid; Rats; Rats, Sprague-Dawley; Superoxide Dismutase; Xylenes | 2006 |