chlorogenic-acid has been researched along with Hemolysis* in 2 studies
2 other study(ies) available for chlorogenic-acid and Hemolysis
Article | Year |
---|---|
Classification of edible chrysanthemums based on phenolic profiles and mechanisms underlying the protective effects of characteristic phenolics on oxidatively damaged erythrocyte.
In this study, phenolic profiles of chrysanthemums derived from five main species were determined for characterization of rationality of their application in tea, beverages and functional foods. A total of 41 phenolics including 3 phenolic acids, 17 flavones, 9 flavanones, 1 dihydroflavonol, 4 flavonols, 4 chalcones and 3 aurones were identified. The contents of 22 characteristic phenolics were simultaneously determined. Chrysanthemum morifolium cv. 'Qiju' (with abundant phenolics) and Coreopsis tinctoria Nutt. (with unique and abundant flavonoid aglycones and glycosides), exhibited excellent cellular antioxidant activities and strong market potentials. Chlorogenic acid, 3,5-dicaffeoylquinic acid and luteolin-7-O-glucoside largely contributing to cellular antioxidant activity of 'Qiju' by forming protective membrane around erythrocyte should be markers for quality control of 'Qiju'. Okanin, the gut microbial-produced metabolite of marein, possessed strong protective effect on oxidatively damaged erythrocyte via incorporating in membrane and entering cytoplasm. Okanin and marein should be markers for quality control of C. tinctoria. Topics: Animals; Antioxidants; Chalcones; Chlorogenic Acid; Chrysanthemum; Coreopsis; Erythrocytes; Flavanones; Flavones; Flavonoids; Hemolysis; Hydroxybenzoates; Male; Malondialdehyde; Oxidative Stress; Phenols; Plant Extracts; Quinic Acid; Rats; Rats, Sprague-Dawley; Reactive Oxygen Species; Tandem Mass Spectrometry | 2019 |
Antimicrobial and efflux pump inhibitory activity of caffeoylquinic acids from Artemisia absinthium against gram-positive pathogenic bacteria.
Traditional antibiotics are increasingly suffering from the emergence of multidrug resistance amongst pathogenic bacteria leading to a range of novel approaches to control microbial infections being investigated as potential alternative treatments. One plausible antimicrobial alternative could be the combination of conventional antimicrobial agents/antibiotics with small molecules which block multidrug efflux systems known as efflux pump inhibitors. Bioassay-driven purification and structural determination of compounds from plant sources have yielded a number of pump inhibitors which acted against gram positive bacteria.. In this study we report the identification and characterization of 4',5'-O-dicaffeoylquinic acid (4',5'-ODCQA) from Artemisia absinthium as a pump inhibitor with a potential of targeting efflux systems in a wide panel of gram-positive human pathogenic bacteria. Separation and identification of phenolic compounds (chlorogenic acid, 3',5'-ODCQA, 4',5'-ODCQA) was based on hyphenated chromatographic techniques such as liquid chromatography with post column solid-phase extraction coupled with nuclear magnetic resonance spectroscopy and mass spectroscopy. Microbial susceptibility testing and potentiation of well know pump substrates revealed at least two active compounds; chlorogenic acid with weak antimicrobial activity and 4',5'-ODCQA with pump inhibitory activity whereas 3',5'-ODCQA was ineffective. These initial findings were further validated with checkerboard, berberine accumulation efflux assays using efflux-related phenotypes and clinical isolates as well as molecular modeling methodology.. These techniques facilitated the direct analysis of the active components from plant extracts, as well as dramatically reduced the time needed to analyze the compounds, without the need for prior isolation. The calculated energetics of the docking poses supported the biological information for the inhibitory capabilities of 4',5'-ODCQA and furthermore contributed evidence that CQAs show a preferential binding to Major Facilitator Super family efflux systems, a key multidrug resistance determinant in gram-positive bacteria. Topics: Animals; Anti-Bacterial Agents; Anti-Infective Agents; Artemisia absinthium; ATP-Binding Cassette Transporters; Berberine; Biofilms; Drug Resistance, Multiple; Drug Synergism; Gram-Positive Bacteria; Hemolysis; Humans; Models, Molecular; Plant Extracts; Protein Conformation; Quinic Acid | 2011 |