chir-99021 and Disease-Models--Animal

chir-99021 has been researched along with Disease-Models--Animal* in 8 studies

Other Studies

8 other study(ies) available for chir-99021 and Disease-Models--Animal

ArticleYear
GSK-3β inhibition elicits a neuroprotection by restoring lysosomal dysfunction in neurons via facilitation of TFEB nuclear translocation after ischemic stroke.
    Brain research, 2022, 03-01, Volume: 1778

    Lysosomal dysfunction is an essential pathogenesis of autophagic neuronal injury after ischemic stroke. As a result of cerebral ischemia, transcription factor EB (TFEB) is greatly phosphorylated by prominently activated glycogen synthase kinase-3β (GSK-3β). This increased TFEB phosphorylation decreases its nuclear translocation and subsequently leads to reduced lysosomal biosynthesis, which ultimately results in lysosomal dysfunction. The present study is to investigate whether the lysosomal dysfunction in neurons can be restored to alleviate post-stroke damage by GSK-3β inhibition. The GSK-3β activity was inhibited by pre-treatment with CHIR-99021 (CHIR) for 3 days before middle cerebral artery occlusion (MCAO) surgery in rats. Besides, the lysosomal capacity was altered by pre-administration with Bafilomycin A1 (Baf-A1) and EN6, respectively. Twenty-four hours after MCAO/reperfusion, the penumbral tissues were obtained to detect the GSK-3β, cytoplasmic and nuclear TFEB, and proteins in autophagic/lysosomal pathway by western blot and immunofluorescence, respectively. Meanwhile, the infarct volume, neurological deficits and neuron survival were assessed to evaluate the neurological outcomes elicited by GSK-3β inhibition. The results demonstrated that the neurological injury could be significantly mitigated by GSK-3β inhibition in MCAO + CHIR group, compared with that in MCAO group. Moreover, CHIR-facilitated TFEB nuclear translocation in neurons was coupled with reinforced lysosomal activities and attenuated autophagic substrates. However, GSK-3β inhibition-induced neuroprotection was greatly counteracted by Baf-A1-weakened lysosomal capacity. Conversely, EN6-reinforced lysosomal activities further ameliorated the autophagic/lysosomal signaling, and synergistically alleviated the neurological damage upon GSK-3β inhibition after MCAO/reperfusion. Our data suggests that GSK-3β inhibition-augmented neuroprotection against ischemic stroke is elicited by restoring the lysosomal dysfunction in neurons.

    Topics: Animals; Basic Helix-Loop-Helix Leucine Zipper Transcription Factors; Disease Models, Animal; Glycogen Synthase Kinase 3 beta; Ischemic Stroke; Lysosomes; Male; Neurons; Neuroprotection; Protein Kinase Inhibitors; Pyridines; Pyrimidines; Rats; Rats, Sprague-Dawley

2022
Small-molecule suppression of calpastatin degradation reduces neuropathology in models of Huntington's disease.
    Nature communications, 2021, 09-06, Volume: 12, Issue:1

    Mitochondrial dysfunction is a common hallmark of neurological disorders, and reducing mitochondrial damage is considered a promising neuroprotective therapeutic strategy. Here, we used high-throughput small molecule screening to identify CHIR99021 as a potent enhancer of mitochondrial function. CHIR99021 improved mitochondrial phenotypes and enhanced cell viability in several models of Huntington's disease (HD), a fatal inherited neurodegenerative disorder. Notably, CHIR99201 treatment reduced HD-associated neuropathology and behavioral defects in HD mice and improved mitochondrial function and cell survival in HD patient-derived neurons. Independent of its known inhibitory activity against glycogen synthase kinase 3 (GSK3), CHIR99021 treatment in HD models suppressed the proteasomal degradation of calpastatin (CAST), and subsequently inhibited calpain activation, a well-established effector of neural death, and Drp1, a driver of mitochondrial fragmentation. Our results established CAST-Drp1 as a druggable signaling axis in HD pathogenesis and highlighted CHIR99021 as a mitochondrial function enhancer and a potential lead for developing HD therapies.

    Topics: Animals; Calcium-Binding Proteins; Calpain; Corpus Striatum; Disease Models, Animal; Dynamins; Gene Expression Regulation; Glycogen Synthase Kinase 3 beta; Humans; Huntington Disease; Injections, Intraperitoneal; Male; Mice; Mitochondria; Neurons; Neuroprotective Agents; Primary Cell Culture; Proteasome Endopeptidase Complex; Proteolysis; Pyridines; Pyrimidines; Signal Transduction

2021
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
    Proceedings of the National Academy of Sciences of the United States of America, 2020, 12-08, Volume: 117, Issue:49

    When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection.

    Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection

2020
Inactivation of glycogen synthase kinase 3β (GSK-3β) enhances mitochondrial biogenesis during myogenesis.
    Biochimica et biophysica acta. Molecular basis of disease, 2018, Volume: 1864, Issue:9 Pt B

    Mitochondrial biogenesis is crucial for myogenic differentiation and regeneration of skeletal muscle tissue and is tightly controlled by the peroxisome proliferator-activated receptor-γ co-activator 1 (PGC-1) signaling network. In the present study, we hypothesized that inactivation of glycogen synthase kinase (GSK)-3β, previously suggested to interfere with PGC-1 in non-muscle cells, potentiates PGC-1 signaling and the development of mitochondrial biogenesis during myogenesis, ultimately resulting in an enhanced myotube oxidative capacity.. GSK-3β was inactivated genetically or pharmacologically during myogenic differentiation of C2C12 muscle cells. In addition, m. gastrocnemius tissue was collected from wild-type and muscle-specific GSK-3β knock-out (KO) mice at different time-points during the reloading/regeneration phase following a 14-day hind-limb suspension period. Subsequently, expression levels of constituents of the PGC-1 signaling network as well as key parameters of mitochondrial oxidative metabolism were investigated.. In vitro, both knock-down as well as pharmacological inhibition of GSK-3β not only increased expression levels of important constituents of the PGC-1 signaling network, but also potentiated myogenic differentiation-associated increases in mitochondrial respiration, mitochondrial DNA copy number, oxidative phosphorylation (OXPHOS) protein abundance and the activity of key enzymes involved in the Krebs cycle and fatty acid β-oxidation. In addition, GSK-3β KO animals showed augmented reloading-induced increases in skeletal muscle gene expression of constituents of the PGC-1 signaling network as well as sub-units of OXPHOS complexes compared to wild-type animals.. Inactivation of GSK-3β stimulates activation of PGC-1 signaling and mitochondrial biogenesis during myogenic differentiation and reloading of the skeletal musculature.

    Topics: Animals; Cell Differentiation; Cell Line; Disease Models, Animal; Female; Glycogen Synthase Kinase 3 beta; Hindlimb Suspension; Humans; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Muscle Development; Muscle, Skeletal; Muscular Atrophy; Myoblasts; Organelle Biogenesis; Oxidative Phosphorylation; Pyridines; Pyrimidines; Signal Transduction; Transcription Factors

2018
The prostaglandin H2 analog U-46619 improves the differentiation efficiency of human induced pluripotent stem cells into endothelial cells by activating both p38MAPK and ERK1/2 signaling pathways.
    Stem cell research & therapy, 2018, 11-15, Volume: 9, Issue:1

    We have shown that the differentiation of human-induced pluripotent stem cells (hiPSCs) into endothelial cells (ECs) is more efficient when performed with a 3-dimensional (3D) scaffold of biomaterial than in monolayers. The current study aims to further increase hiPSC-EC differentiation efficiency by deciphering the signaling pathways in 3D scaffolds.. We modified our 3D protocol by using U-46619 to upregulate both p38 mitogen-activated protein kinase (p38MAPK) and extracellular signal-regulated kinase 1/2 (ERK1/2) signaling, which increased the differentiation efficiency (as measured by CD31 expression) to as high as 89% in two established hiPSC lines. The differentiated cells expressed arteriovenous, but not lymphatic, markers; formed tubular structures and EC lumen in vitro; had significantly shorter population-doubling times than monolayer-differentiated hiPSC-ECs; and restored perfusion and vascularity in a murine hind limb ischemia model. The differentiation efficiency was also > 85% in three hiPSC lines that had been derived from patients with diseases or disease symptoms that have been linked to endothelial dysfunction.. These observations demonstrate that activating both p38MAPK and ERK1/2 signaling pathways with U-46619 improves the efficiency of arteriovenous hiPSC-EC differentiation and produces cells with greater proliferative capacity.

    Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Animals; Cell Differentiation; Cell Line; Disease Models, Animal; Endothelial Cells; Enzyme Activation; Hindlimb; Humans; Induced Pluripotent Stem Cells; Ischemia; MAP Kinase Signaling System; Mesoderm; Mice, Inbred NOD; Mice, SCID; p38 Mitogen-Activated Protein Kinases; Perfusion; Pyridines; Pyrimidines

2018
Wnt/β-catenin-mediated signaling re-activates proliferation of matured cardiomyocytes.
    Stem cell research & therapy, 2018, 12-07, Volume: 9, Issue:1

    The Wnt/β-catenin signaling pathway plays an important role in the development of second heart field (SHF Isl1+) that gives rise to the anterior heart field (AHF) cardiac progenitor cells (CPCs) for the formation of the right ventricle, outflow tract (OFT), and a portion of the inflow tract (IFT). During early cardiogenesis, these AHF CPCs reside within the pharyngeal mesoderm (PM) that provides a microenvironment for them to receive signals that direct their cell fates. Here, N-cadherin, which is weakly expressed by CPCs, plays a significant role by promoting the adhesion of CPCs within the AHF, regulating β-catenin levels in the cytoplasm to maintain high Wnt signaling and cardioproliferation while also preventing the premature differentiation of CPCs. On the contrary, strong expression of N-cadherin observed throughout matured myocardium is associated with downregulation of Wnt signaling due to β-catenin sequestration at the cell membrane, inhibiting cardioproliferation. As such, upregulation of Wnt signaling pathway to enhance cardiac tissue proliferation in mature cardiomyocytes can be explored as an interesting avenue for regenerative treatment to patients who have suffered from myocardial infarction.. To investigate if Wnt signaling is able to enhance cellular proliferation of matured cardiomyocytes, we treated cardiomyocytes isolated from adult mouse heart and both murine and human ES cell-derived matured cardiomyocytes with N-cadherin antibody or CHIR99021 GSK inhibitor in an attempt to increase levels of cytoplasmic β-catenin. Immunostaining, western blot, and quantitative PCR for cell proliferation markers, cell cycling markers, and Wnt signaling pathway markers were used to quantitate re-activation of cardioproliferation and Wnt signaling.. N-cadherin antibody treatment releases sequestered β-catenin at N-cadherin-based adherens junction, resulting in an increased pool of cytoplasmic β-catenin, similar in effect to CHIR99021 GSK inhibitor treatment. Both treatments therefore upregulate Wnt signaling successfully and result in significant increases in matured cardiomyocyte proliferation.. Although both N-cadherin antibody and CHIR99021 treatment resulted in increased Wnt signaling and cardioproliferation, CHIR99021 was found to be the more effective treatment method for human ES cell-derived cardiomyocytes. Therefore, we propose that CHIR99021 could be a potential therapeutic option for myocardial infarction patients in need of regeneration of cardiac tissue.

    Topics: Adult; Animals; beta Catenin; Cadherins; Cell Differentiation; Cell Line; Cell Nucleus; Cell Proliferation; Disease Models, Animal; Human Embryonic Stem Cells; Humans; Mice; Myocardium; Myocytes, Cardiac; Phenotype; Protein Transport; Pyridines; Pyrimidines; RNA, Messenger; Up-Regulation; Wnt Signaling Pathway

2018
Pharmacologically blocking p53-dependent apoptosis protects intestinal stem cells and mice from radiation.
    Scientific reports, 2015, Apr-10, Volume: 5

    Exposure to high levels of ionizing radiation (IR) leads to debilitating and dose-limiting gastrointestinal (GI) toxicity. Using three-dimensional mouse crypt culture, we demonstrated that p53 target PUMA mediates radiation-induced apoptosis via a cell-intrinsic mechanism, and identified the GSK-3 inhibitor CHIR99021 as a potent radioprotector. CHIR99021 treatment improved Lgr5+ cell survival and crypt regeneration after radiation in culture and mice. CHIR99021 treatment specifically blocked apoptosis and PUMA induction and K120 acetylation of p53 mediated by acetyl-transferase Tip60, while it had no effect on p53 stabilization, phosphorylation or p21 induction. CHIR99021 also protected human intestinal cultures from radiation by PUMA but not p21 suppression. These results demonstrate that p53 posttranslational modifications play a key role in the pathological and apoptotic response of the intestinal stem cells to radiation and can be targeted pharmacologically.

    Topics: Acetylation; Animals; Apoptosis; Apoptosis Regulatory Proteins; Cells, Cultured; Disease Models, Animal; Gastrointestinal Diseases; Gene Expression Regulation; Glycogen Synthase Kinase 3; Humans; Intestines; Mice; Mice, Knockout; Pyridines; Pyrimidines; Radiation Injuries, Experimental; Radiation Tolerance; Radiation-Protective Agents; Radiation, Ionizing; Radiotherapy; Receptors, G-Protein-Coupled; Stem Cells; Tumor Suppressor Protein p53; Tumor Suppressor Proteins

2015
Preclinical validation and imaging of Wnt-induced repair in human 3D lung tissue cultures.
    The European respiratory journal, 2015, Volume: 46, Issue:4

    Chronic obstructive pulmonary disease (COPD) is characterised by a progressive loss of lung tissue. Inducing repair processes within the adult diseased lung is of major interest and Wnt/β-catenin signalling represents a promising target for lung repair. However, the translation of novel therapeutic targets from model systems into clinical use remains a major challenge.We generated murine and patient-derived three-dimensional (3D) ex vivo lung tissue cultures (LTCs), which closely mimic the 3D lung microenvironment in vivo. Using two well-known glycogen synthase kinase-3β inhibitors, lithium chloride (LiCl) and CHIR 99021 (CT), we determined Wnt/β-catenin-driven lung repair processes in high spatiotemporal resolution using quantitative PCR, Western blotting, ELISA, (immuno)histological assessment, and four-dimensional confocal live tissue imaging.Viable 3D-LTCs exhibited preserved lung structure and function for up to 5 days. We demonstrate successful Wnt/β-catenin signal activation in murine and patient-derived 3D-LTCs from COPD patients. Wnt/β-catenin signalling led to increased alveolar epithelial cell marker expression, decreased matrix metalloproteinase-12 expression, as well as altered macrophage activity and elastin remodelling. Importantly, induction of surfactant protein C significantly correlated with disease stage (per cent predicted forced expiratory volume in 1 s) in patient-derived 3D-LTCs.Patient-derived 3D-LTCs represent a valuable tool to analyse potential targets and drugs for lung repair. Enhanced Wnt/β-catenin signalling attenuated pathological features of patient-derived COPD 3D-LTCs.

    Topics: Adult; Aged; Animals; beta Catenin; Cells, Cultured; Disease Models, Animal; Emphysema; Enzyme-Linked Immunosorbent Assay; Epithelial Cells; Female; Glycogen Synthase Kinase 3; Glycogen Synthase Kinase 3 beta; Humans; Lithium Chloride; Lung; Macrophages, Alveolar; Male; Mice; Mice, Inbred C57BL; Microscopy, Confocal; Middle Aged; Pulmonary Disease, Chronic Obstructive; Pyridines; Pyrimidines; Signal Transduction; Swine; Wnt Proteins; Wound Healing

2015