cgs-35066 has been researched along with Hypertension* in 4 studies
1 review(s) available for cgs-35066 and Hypertension
Article | Year |
---|---|
[Physiological and pathophysiological roles of the endothelin converting enzymes].
Topics: Animals; Aspartic Acid Endopeptidases; Benzazepines; Benzofurans; Drug Design; Endothelin-Converting Enzymes; Glycopeptides; Heart Failure; Humans; Hypertension; Metalloendopeptidases; Mice; Mice, Knockout; Myocardial Infarction; Organophosphonates; Phenylalanine; Tetracyclines; Tetrazoles | 2004 |
3 other study(ies) available for cgs-35066 and Hypertension
Article | Year |
---|---|
Triple vasopeptidase inhibition normalizes blood pressure in conscious, unrestrained, and spontaneously hypertensive rats.
CGS 35601 is a potent triple vasopeptidase inhibitor (VPI) of angiotensin-converting enzyme (ACE), neutral endopeptidase (NEP), and endothelin-converting enzyme (ECE). The aim of the study was to determine the effects of this VPI on the hemodynamic profile of conscious, instrumented, unrestrained spontaneously hypertensive rats (SHR), in comparison to selective inhibitors of ACE and ACE + NEP, than +ECE combined. Circulating plasma concentrations of vasoactive mediators and reactive oxygen species were measured.. Old SHR male were instrumented (arterial catheter) and placed in a metabolic cage for daily hemodynamic measurements and blood samplings. Seven days after surgery, SHR received 1) saline vehicle; 2) increasing doses of the triple CGS 35601 (0.01, 0.1, 1, and 5 mg/kg/d, intra-arterially (i.a.) infusion for 5 d/dose) followed by a 5-day washout period; 3) benazepril (ACE inhibitor), ACE inhibitor + CGS 24592 (NEP inhibitor) and ACE inhibitor + NEP inhibitor + CGS 35066 (ECE inhibitor) (1 or 5 mg/kg/d i.a. infusion for 5 d/combination) followed by a 5-day washout period.. The lowest dose of CGS 35601 had no effect. Doses at 0.1, 1, and 5 mg/kg/d reduced mean arterial blood pressure by 10%, 22%, and 40%, respectively. Heart rate was unaffected in all groups. CGS 35601 decreased concentrations of angiotensin II (Ang II), endothelin-1 (ET-1), and pro-atrial natriuretic peptide (proANP), and increased those of big ET-1, atrial natriuretic peptide (ANP), bradykinin (BK), and hydrogen peroxide (H2O2) dose dependently.. The blood pressure-lowering effect of this triple VPI was superior to that of the other VPI in this preclinical rat model of hypertension. Further experiments are needed to assess triple VPI to other combinations in other models with regard to efficacy and angioedema. Only then it may constitute a first-in-class approach for the treatment of hypertension and other cardiovascular disorders. Topics: Angiotensin II; Angiotensin-Converting Enzyme Inhibitors; Animals; Aspartic Acid Endopeptidases; Atrial Natriuretic Factor; Benzazepines; Benzofurans; Blood Pressure; Dose-Response Relationship, Drug; Endothelin-1; Endothelin-Converting Enzymes; Hypertension; Indoles; Male; Metalloendopeptidases; Neprilysin; Nitric Oxide; Organophosphonates; Phenylalanine; Protease Inhibitors; Rats; Rats, Inbred SHR; Rats, Sprague-Dawley; Rats, Wistar; Reactive Oxygen Species | 2005 |
Triple vasopeptidase inhibition of angiotensin-converting enzyme/neutral endopeptidase/endothelin-converting enzyme activities on the hemodynamic profile of chronically instrumented unrestrained conscious spontaneously hypertensive rats.
Inhibition of the renin-angiotensin system with an angiotensin-converting enzyme inhibitor (ACEi) is an effective therapy in hypertension. Vasopeptidase inhibition was initially proposed with compounds inhibiting both angiotensin-converting enzyme and neutral endopeptidase (omapatrilat), but clinical trials revealed that reducing angiotensin II while blocking the degradation of vasodilatory peptides was not without concerns. We have previously investigated the combination of an ACEi with an endothelin-converting enzyme inhibitor (ECEi); now we add a neutral endopeptidase inhibitor (NEPi) toward triple vasopeptidase inhibition. Male spontaneously hypertensive rats were surgically implanted with a vascular catheter and treated with an ACEi (benazepril), a NEPi (CGS 24592) and an ECEi (CGS 35066) (continuous intra-arterial infusion at 1 or 5 mg/kg/day x 5 days each). After 15 days, drugs administration was stopped for 3 days. ACEi (1 mg/kg per day) reduced the mean arterial blood pressure by 8.4%. The addition of a NEPi and an ECEi at the same dose did not shown any added benefit. The mean arterial blood pressure came back to baseline upon cessation of treatment. ACEi (5 mg/kg per day) reduced the mean arterial blood pressure by 28%. The mean arterial blood pressure remained attenuated by 21% and 19% with the addition of the NEPi and the ECEi. Again, the mean arterial blood pressure rose back to 148 +/- 4 mmHg following cessation of treatment. Daily biochemical and hematological analysis of plasma did not reveal any signs of toxicity, except for a rapid elevation in K (40%) after 1 day of ACEi. Thus, angiotensin II inhibition plays a primary role in controlling the blood pressure of spontaneously hypertensive whereas additional NEPi and ECEi did not provide further benefits under the present dose combinations. The normalizing effect of the higher dose of ACEi by itself made it impossible to discriminate the role of neutral endopeptidase and endothelin-converting enzyme-modulated peptides and to further define the paradigm of triple vasopeptidase inhibition toward better control of vascular hemodynamics. Additional studies are underway. Topics: Angiotensin-Converting Enzyme Inhibitors; Animals; Antihypertensive Agents; Aspartic Acid Endopeptidases; Benzazepines; Benzofurans; Blood Pressure; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Therapy, Combination; Endothelin-Converting Enzymes; Heart Rate; Hypertension; Infusions, Intra-Arterial; Male; Metalloendopeptidases; Neprilysin; Organophosphonates; Phenylalanine; Rats; Rats, Inbred SHR; Time Factors | 2004 |
Effects of benazepril, an angiotensin-converting enzyme inhibitor, combined with CGS 35066, a selective endothelin-converting enzyme inhibitor, on arterial blood pressure in normotensive and spontaneously hypertensive rats.
Continuous intra-arterial administration of a selective endothelin-converting enzyme (ECE) inhibitor CGS 35066 at a dose of 30 mg/kg decreased the mean arterial blood pressure (MABP) in conscious unrestrained normotensive rats and spontaneously hypertensive rats (SHRs). At that dose, the magnitude of the antihypertensive effects was greater in SHRs than in normotensive rats. Additional administration of an angiotensin-converting enzyme (ACE) inhibitor benazapril (lotensin) further reduced MABP in normotensive rats and completely blocked hypertension in SHRs. However, when the selective ECE inhibitor was subsequently removed, blood pressure was less inhibited in normotenive rats whereas it remained strongly inhibited in SHRs by the ACE inhibitor alone. These results imply that simultaneous treatment with benazepril and CGS 35066 gave additive antihypertensive effects in normotensive rats but not in SHRs, when both compounds were administered at a dose of 30 mg/kg. Our results suggest that: (i) the endothelin (ET) system together with the renin-angiotensin system contribute to the maintenance of blood pressure in normal healthy rats; (ii) while an ECE inhibitor acts as an antihypertensive agent on its own, the sole efficacy of ACE inhibitor at that dose is sufficient to block MABP without the participation of the ET system in SHR. Topics: Angiotensin-Converting Enzyme Inhibitors; Animals; Aspartic Acid Endopeptidases; Benzazepines; Benzofurans; Blood Pressure; Drug Therapy, Combination; Endothelin-1; Endothelin-Converting Enzymes; Hypertension; Male; Metalloendopeptidases; Organophosphonates; Rats; Rats, Inbred SHR; Rats, Inbred WKY | 2002 |