cgp-57380 and Inflammation

cgp-57380 has been researched along with Inflammation* in 4 studies

Reviews

2 review(s) available for cgp-57380 and Inflammation

ArticleYear
Update on the Development of MNK Inhibitors as Therapeutic Agents.
    Journal of medicinal chemistry, 2022, 01-27, Volume: 65, Issue:2

    Mitogen-activated protein kinase-interacting kinases 1 and 2 (MNK1/2) represent a central class of enzymes that are activated by extracellular signal-regulated kinase (ERK) or p38 mitogen-activated protein (MAP) kinases. MNK1 and MNK2 coordinate cellular signaling, control production of inflammatory chemokines, and regulate cell proliferation and survival. MNK1/2 are referred to as serine/threonine kinases as they phosphorylate serine or threonine residues on their substrates. Upon activation, MNK1/2 phosphorylate eukaryotic translation initiation factor 4E (eIF4E) at Ser209, which in turn initiates ribosome assembly and protein translation. Deleterious overexpression of MNK1/2 and/or eIF4E have been reported in several diseases including cancers, neurological disorders, autism, and inflammation. Recently, there have been intense efforts toward the development of potent and selective inhibitors of MNK1/2 in both academia and industry. Herein, we review the current understanding of the structural and biological aspects of MNK1/2 and provide an update of pharmacological inhibitors of MNK1/2 including candidates in clinical trials.

    Topics: Animals; Humans; Inflammation; Intracellular Signaling Peptides and Proteins; Neoplasms; Nervous System Diseases; Protein Kinase Inhibitors; Protein Serine-Threonine Kinases

2022
Targeting the immunity protein kinases for immuno-oncology.
    European journal of medicinal chemistry, 2019, Feb-01, Volume: 163

    With the rise of immuno-oncology, small-molecule modulators targeting immune system and inflammatory processes are becoming a research hotspot. This work mainly focuses on key kinases acting as central nodes in immune signaling pathways. Although over thirty small-molecule kinase inhibitors have been approved by FDA for the treatment of various cancers, only a few are associated with immuno-oncology. With the going deep of the research work, more and more immunity protein kinase inhibitors are approved for clinical trials to treat solid tumors and hematologic malignancies by FDA, which remain good prospects. Meanwhile, in-depth understanding of biological function of immunity protein kinases in immune system is pushing the field forward. This article focuses on the development of safe and effective small-molecule immunity protein kinase inhibitors and further work needs to keep the promises of these inhibitors for patients' welfare.

    Topics: Humans; Immune System; Immunotherapy; Inflammation; Neoplasms; Protein Kinase Inhibitors

2019

Other Studies

2 other study(ies) available for cgp-57380 and Inflammation

ArticleYear
The MNK-1/eIF4E pathway as a new therapeutic pathway to target inflammation and remodelling in asthma.
    Cellular signalling, 2016, Volume: 28, Issue:10

    Therapeutic targets in asthma are reduction of airway inflammation and remodelling, the latter is not affected by available drugs. Here we present data that inhibition of MAPK-activated protein kinase (MNK)-1 reduces inflammation and remodelling. MNK-1 regulates protein expression by controlling mRNA stability, nuclear export and translation through the eukaryotic initiation factor 4E (eIF4E). Airway smooth muscle cells were derived from asthmatic and non-asthmatic donors. Cells were pre-treated with CGP57380 (MNK-1 inhibitor) or MNK-1 siRNA, before TNF-α stimulation. Cytokine and protein expression was analysed by ELISA, real time PCR and immunoblotting. Proliferation was monitored by cell counts. TNF-α activated MNK-1 phosphorylation between 15 and 30min. and subsequently eIF4E between 15 and 60min. EIF4E activity was inhibited by CGP57380 dose-dependently. Inhibition of MNK-1 by CGP57380 or MNK-1 siRNA significantly reduced TNF-α induced CXCL10 and eotaxin mRNA expression and secretion, but had no effect on IL-8. However, CXCL10 mRNA stability or NF-κB activity were not affected by MNK-1 inhibition. Furthermore, eIF4E was detected in the cytosol and the nucleus, but TNF-α did not affected its export from the nucleus. Cytokine array assessment showed that in addition to eotaxin and CXCL10, asthma relevant GRO α and RANTES were down-regulated by MNK-1 inhibition. In addition, MNK-1 inhibition significantly reduced FCS and PDGF-BB induced cell proliferation. We are the first to report that MNK-1 controls chemokine secretion and proliferation in human airway smooth muscle cells. Therefore we suggest that MNK-1 inhibition may present a new target to limit inflammation and remodelling in asthmatic airways.

    Topics: Active Transport, Cell Nucleus; Aniline Compounds; Asthma; Becaplermin; Cell Nucleus; Cell Proliferation; Chemokine CCL11; Chemokine CXCL10; Down-Regulation; Eukaryotic Initiation Factor-4E; Humans; Inflammation; Intracellular Signaling Peptides and Proteins; Kinetics; Myocytes, Smooth Muscle; NF-kappa B; p38 Mitogen-Activated Protein Kinases; Phosphorylation; Protein Serine-Threonine Kinases; Proto-Oncogene Proteins c-sis; Purines; RNA Stability; RNA, Messenger; RNA, Small Interfering; Signal Transduction; Tumor Necrosis Factor-alpha

2016
MNK kinases regulate multiple TLR pathways and innate proinflammatory cytokines in macrophages.
    American journal of physiology. Gastrointestinal and liver physiology, 2008, Volume: 294, Issue:2

    The MNK kinases are downstream of both the p38 and ERK MAP kinase pathways and act to increase gene expression. MNK inhibition using the compound CGP57380 has recently been reported to inhibit tumor necrosis factor (TNF) production in macrophage cell lines stimulated with Escherichia coli lipopolysaccharide (LPS). However, the range of receptors that signal through the MNK kinases and the extent of the resultant cytokine response are not known. We found that TNF production was inhibited in RAW264.7 macrophage cells by CGP57380 in a dose-responsive manner with agonists for Toll-like receptor (TLR) 2 (HKLM), TLR4 (Salmonella LPS), TLR6/2 (FSL), TLR7 (imiquimod), and TLR9 (CpG DNA). CGP57380 also inhibited the peak of TNF mRNA production and increased the rate of TNF mRNA decay, effects not due to the destabilizing RNA binding protein tristetraprolin (TTP). Similar to its effects on TNF, CGP57380 caused dose-responsive inhibition of TTP production from stimulation with either LPS or CpG DNA. MNK inhibition also blocked IL-6 but permitted IL-10 production in response to LPS. Studies using bone marrow-derived macrophages (BMDM) isolated from a spontaneous mouse model of Crohn's disease-like ileitis (SAMP1/YitFc strain) revealed significant inhibition by CGP57380 of the proinflammatory cytokines TNF, IL-6, and monocyte chemoattractant protein-1 at 4 and 24 h after LPS stimulation. IL-10 production was higher in CGP53870-treated BMDM at 4 h but was similar to the controls by 24 h. Taken together, these data demonstrate that MNK kinases signal through a variety of TLR agonists and mediate a potent innate, proinflammatory cytokine response.

    Topics: Aniline Compounds; Animals; Blotting, Western; Bone Marrow Cells; Crohn Disease; Cytokines; Enzyme-Linked Immunosorbent Assay; Inflammation; Lipopolysaccharides; Macrophages; Mice; Mice, Inbred Strains; Protein Serine-Threonine Kinases; Purines; Reverse Transcriptase Polymerase Chain Reaction; RNA; Signal Transduction; Toll-Like Receptors; Tumor Necrosis Factor-alpha

2008