cgp-57380 has been researched along with Brain-Neoplasms* in 3 studies
3 other study(ies) available for cgp-57380 and Brain-Neoplasms
Article | Year |
---|---|
Rare germline variants in the E-cadherin gene CDH1 are associated with the risk of brain tumors of neuroepithelial and epithelial origin.
The genetic basis of brain tumor development is poorly understood. Here, leukocyte DNA of 21 patients from 15 families with ≥ 2 glioma cases each was analyzed by whole-genome or targeted sequencing. As a result, we identified two families with rare germline variants, p.(A592T) or p.(A817V), in the E-cadherin gene CDH1 that co-segregate with the tumor phenotype, consisting primarily of oligodendrogliomas, WHO grade II/III, IDH-mutant, 1p/19q-codeleted (ODs). Rare CDH1 variants, previously shown to predispose to gastric and breast cancer, were significantly overrepresented in these glioma families (13.3%) versus controls (1.7%). In 68 individuals from 28 gastric cancer families with pathogenic CDH1 germline variants, brain tumors, including a pituitary adenoma, were observed in three cases (4.4%), a significantly higher prevalence than in the general population (0.2%). Furthermore, rare CDH1 variants were identified in tumor DNA of 6/99 (6%) ODs. CDH1 expression was detected in undifferentiated and differentiating oligodendroglial cells isolated from rat brain. Functional studies using CRISPR/Cas9-mediated knock-in or stably transfected cell models demonstrated that the identified CDH1 germline variants affect cell membrane expression, cell migration and aggregation. E-cadherin ectodomain containing variant p.(A592T) had an increased intramolecular flexibility in a molecular dynamics simulation model. E-cadherin harboring intracellular variant p.(A817V) showed reduced β-catenin binding resulting in increased cytosolic and nuclear β-catenin levels reverted by treatment with the MAPK interacting serine/threonine kinase 1 inhibitor CGP 57380. Our data provide evidence for a role of deactivating CDH1 variants in the risk and tumorigenesis of neuroepithelial and epithelial brain tumors, particularly ODs, possibly via WNT/β-catenin signaling. Topics: Adenoma; Aniline Compounds; Animals; Antibody Diversity; Antigens, CD; Brain Neoplasms; Cadherins; Carcinoma; DNA, Neoplasm; Gene Knock-In Techniques; Genetic Variation; HEK293 Cells; Humans; Neoplasms, Neuroepithelial; Oligodendroglioma; Protein Kinase Inhibitors; Purines; Rats; Rats, Sprague-Dawley; Whole Genome Sequencing | 2021 |
Inhibition of MNK pathways enhances cancer cell response to chemotherapy with temozolomide and targeted radionuclide therapy.
Current standard-of-care treatment for malignant cancers includes radiotherapy and adjuvant chemotherapy. Here, we report increased MAP kinase-interacting kinase (MNK)-regulated phosphorylation of translation initiation factor 4E (eIF4E) in glioma cells upon temozolomide (TMZ) treatment and in medullary thyroid carcinoma (MTC) cells in response to targeted radionuclide therapy. Depletion of MNK activity by using two MNK inhibitors, CGP57380 or cercosporamide, as well as by MNK1-specific knockdown sensitized glioblastoma (GBM) cells and GBM-derived spheres to TMZ. Furthermore, CGP57380 treatment enhanced response of MTC cells to (177)Lu-labeled gastrin analogue. In order to understand how MNK signaling pathways support glioma survival we analyzed putative MNK substrates by quantitative phosphoproteomics in normal condition and in the presence of TMZ. We identified MNK inhibitor-sensitive phosphorylation sites on eIF4G1, mutations of which either influenced eIF4E phosphorylation or glioma cell response to TMZ, pointing to altered regulation of translation initiation as a resistance mechanism. Pharmacological inhibition of overexpressed MNK1 by CGP57380 reduced eIF4E phosphorylation and induced association of inactive MNK1 with eIF4G1. Taken together, our data show an activation of MNK-mediated survival mechanisms in response to either glioma chemotherapy or MTC targeted radiation and suggest that inhibition of MNK activity represents an attractive sensitizing strategy for cancer treatments. Topics: Aniline Compounds; Antineoplastic Agents; Brain Neoplasms; Cell Line, Tumor; Dacarbazine; Eukaryotic Initiation Factor-4E; Eukaryotic Initiation Factor-4G; Gastrins; Glioma; Humans; Intracellular Signaling Peptides and Proteins; Lutetium; Phosphoproteins; Phosphorylation; Protein Kinase Inhibitors; Protein Serine-Threonine Kinases; Proteomics; Purines; Radioisotopes; Signal Transduction; Temozolomide | 2016 |
MNK1 pathway activity maintains protein synthesis in rapalog-treated gliomas.
High levels of mammalian target of rapamycin complex 1 (mTORC1) activity in malignant gliomas promote tumor progression, suggesting that targeting mTORC1 has potential as a therapeutic strategy. Remarkably, clinical trials in patients with glioma revealed that rapamycin analogs (rapalogs) have limited efficacy, indicating activation of resistance mechanisms. Targeted depletion of MAPK-interacting Ser/Thr kinase 1 (MNK1) sensitizes glioma cells to the mTORC1 inhibitor rapamycin through an indistinct mechanism. Here, we analyzed how MNK1 and mTORC1 signaling pathways regulate the assembly of translation initiation complexes, using the cap analog m7GTP to enrich for initiation complexes in glioma cells followed by mass spectrometry-based quantitative proteomics. Association of eukaryotic translation initiation factor 4E (eIF4E) with eIF4E-binding protein 1 (4EBP1) was regulated by the mTORC1 pathway, whereas pharmacological blocking of MNK activity by CGP57380 or MNK1 knockdown, along with mTORC1 inhibition by RAD001, increased 4EBP1 binding to eIF4E. Furthermore, combined MNK1 and mTORC1 inhibition profoundly inhibited 4EBP1 phosphorylation at Ser65, protein synthesis and proliferation in glioma cells, and reduced tumor growth in an orthotopic glioblastoma (GBM) mouse model. Immunohistochemical analysis of GBM samples revealed increased 4EBP1 phosphorylation. Taken together, our data indicate that rapalog-activated MNK1 signaling promotes glioma growth through regulation of 4EBP1 and indicate a molecular cross-talk between the mTORC1 and MNK1 pathways that has potential to be exploited therapeutically. Topics: Aniline Compounds; Animals; Brain Neoplasms; Cell Line, Tumor; Eukaryotic Initiation Factor-4E; Female; Gene Expression Regulation, Neoplastic; Glioma; Humans; Immunohistochemistry; Mechanistic Target of Rapamycin Complex 1; Mice; Mice, Knockout; Mice, Nude; Multiprotein Complexes; Neoplasm Transplantation; Phosphorylation; Protein Binding; Protein Biosynthesis; Protein Serine-Threonine Kinases; Purines; Signal Transduction; Sirolimus; TOR Serine-Threonine Kinases | 2014 |