cgp-55845a has been researched along with Disease-Models--Animal* in 16 studies
16 other study(ies) available for cgp-55845a and Disease-Models--Animal
Article | Year |
---|---|
A GABA
CDKL5 (cyclin-dependent kinase-like 5) deficiency disorder (CDD) is a severe neurodevelopmental encephalopathy characterized by early-onset epilepsy and intellectual disability. Studies in mouse models have linked CDKL5 deficiency to defects in neuronal maturation and synaptic plasticity, and disruption of the excitatory/inhibitory balance. Interestingly, increased density of both GABAergic synaptic terminals and parvalbumin inhibitory interneurons was recently observed in the primary visual cortex of Cdkl5 knockout (KO) mice, suggesting that excessive GABAergic transmission might contribute to the visual deficits characteristic of CDD. However, the functional relevance of cortical GABAergic circuits abnormalities in these mutant mice has not been investigated so far. Here we examined GABAergic circuits in the perirhinal cortex (PRC) of Cdkl5 KO mice, where we previously observed impaired long-term potentiation (LTP) associated with deficits in novel object recognition (NOR) memory. We found a higher number of GABAergic (VGAT)-immunopositive terminals in the PRC of Cdkl5 KO compared to wild-type mice, suggesting that increased inhibitory transmission might contribute to LTP impairment. Interestingly, while exposure of PRC slices to the GABA Topics: Animals; Disease Models, Animal; Epileptic Syndromes; GABA-A Receptor Antagonists; GABA-B Receptor Antagonists; GABAergic Neurons; Long-Term Potentiation; Mice; Mice, Knockout; Neuronal Plasticity; Open Field Test; Perirhinal Cortex; Phosphinic Acids; Picrotoxin; Propanolamines; Protein Serine-Threonine Kinases; Receptors, GABA-B; Spasms, Infantile | 2021 |
The ketogenic diet metabolite beta-hydroxybutyrate (β-HB) reduces incidence of seizure-like activity (SLA) in a K
The high-fat, low-carbohydrate ketogenic diet (KD) is an effective clinical treatment for epilepsy in juveniles, especially for drug-resistant seizures. The KD results in elevated production of ketone bodies (KB's), such as beta-hydroxybutyrate (β-HB), which are thought to have anticonvulsant properties; however, their exact mechanism of action is unknown. In vitro, KB effects on reducing neuronal firing rates are mediated in part by K Topics: 3-Hydroxybutyric Acid; Animals; Animals, Genetically Modified; Anticonvulsants; Disease Models, Animal; Drosophila melanogaster; Drosophila Proteins; GABA Antagonists; Hypoglycemic Agents; KATP Channels; Phosphinic Acids; Propanolamines; Receptors, GABA-B; Seizures; Signal Transduction; Statistics, Nonparametric; Tolbutamide | 2017 |
Effect of GABA
Interleukin (IL) 6 and 18 plays an important role in inflammatory response following hypoxia ischemia encephalopathy (HIE). Present study was designed to demonstrate the effect of two GABAB receptor antagonists (CGP 35348 and 55845), respectively, on the serum IL6 and IL 18 concentrations in albino mice. Albino mice pups (of both genders) were subjected to Murine model of hypoxia-ischemia encephalopathy on postnatal day 10 (right common carotid artery was ligated followed by 8% hypoxia for 25 minutes). After neonatal brain damage and following weaning, mice were divided in three groups, in gender specific manner, and fed on normal rodent diet till they were 13 week old. At this time point, group 1 received intraperitonial saline solution (control group), group 2 was supplemented with CGP 35348 (1mg/ml solvent/Kg body weight) and group 3 with CGP 55845 (1mg/ml solvent/Kg body weight), intraperitonially, for 12 days and IL 6 and 18 concentrations were determined in serum by ELISA. It was observed that CGP 35348 supplementation resulted in reduced interlukin-6 and interlukin-18 concentrations in male albino mice. While CGP 55845 supplementation increased IL-6 and IL-18 concentrations in female albino mice following HIE. Our results are indicating that GABAB receptor antagonist's supplementation affects IL concentrations in albino mice in a gender specific manner following neonatal brain damage and can be further explored for the treatments of hypoxia ischemia associated neurological ailments. Topics: Animals; Animals, Newborn; Anti-Inflammatory Agents; Biomarkers; Brain; Disease Models, Animal; Female; GABA-B Receptor Antagonists; Hypoxia-Ischemia, Brain; Inflammation Mediators; Interleukin-18; Interleukin-6; Male; Mice; Organophosphorus Compounds; Phosphinic Acids; Propanolamines; Sex Factors | 2016 |
Gender-specific effects of CGP 55845, GABAB receptor antagonist, on neuromuscular coordination, learning and memory formation in albino mouse following neonatal hypoxia-ischemia insult.
GABAB receptor antagonists are experimentally proved as spatial memory enhancers in mouse models but their role has not been described following hypoxic-ischemic insult. 10-day-old albino mice were subjected to Murine model of hypoxia and ischemia. Following brain damage, mice were fed on normal rodent diet till they were 13 weeks old. At this time point, mice were divided into two groups. Group 1 received saline and group 2 received intraperitoneally CGP 55845 (1 mg/ml solvent/Kg body weight) for 12 days. Behavioural observations were made during rota rod, open field and Morris water maze test along with brain infarct measurement in both CGP 55845 treated and untreated groups. It was observed that application of GABAB receptor antagonist improved the over all motor function in male and female albino mice but effects were more pronounced in males. In open field, CGP 55845-treated female mice showed poor performance. CGP 55845 had no significant effect on learning and memory formation during Morris water maze test and also on brain infract size in both genders following hypoxia ischemia encephalopathy. Effects of CGP 55845 can be further explored in a dose and duration dependent manner to improve the learning and memory in albino mice following neonatal brain damage. Topics: Animals; Animals, Newborn; Behavior, Animal; Brain; Disease Models, Animal; Female; GABA-B Receptor Antagonists; Hypoxia-Ischemia, Brain; Ischemia; Male; Maze Learning; Memory; Mice; Phosphinic Acids; Propanolamines; Sex Characteristics | 2015 |
Activity-dependent hyperpolarization of EGABA is absent in cutaneous DRG neurons from inflamed rats.
A shift in GABA(A) signaling from inhibition to excitation in primary afferent neurons appears to contribute to the inflammation-induced increase in afferent input to the CNS. An activity-dependent depolarization of the GABA(A) current equilibrium potential (E(GABA)) has been described in CNS neurons which drives a shift in GABA(A) signaling from inhibition to excitation. The purpose of the present study was to determine if such an activity-dependent depolarization of E(GABA) occurs in primary afferents and whether the depolarization is amplified with persistent inflammation. Acutely dissociated retrogradely labeled cutaneous dorsal root ganglion (DRG) neurons from naïve and inflamed rats were studied with gramicidin perforated patch recording. Rather than a depolarization, 200 action potentials delivered at 2 Hz resulted in a ∼10 mV hyperpolarization of E(GABA) in cutaneous neurons from naïve rats. No such hyperpolarization was observed in neurons from inflamed rats. The shift in E(GABA) was not blocked by 10 μM bumetanide. Furthermore, because activity-dependent hyperpolarization of E(GABA) was fully manifest in the absence of HCO₃⁻ in the bath solution, this shift was not dependent on a change in HCO₃⁻-Cl⁻ exchanger activity, despite evidence of HCO₃⁻-Cl⁻ exchangers in DRG neurons that may contribute to the establishment of E(GABA) in the presence of HCO₃⁻. While the mechanism underlying the activity-dependent hyperpolarization of E(GABA) has yet to be identified, because this mechanism appears to function as a form of feedback inhibition, facilitating GABA-mediated inhibition of afferent activity, it may serve as a novel target for the treatment of inflammatory pain. Topics: 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid; Action Potentials; Amino Acids; Animals; Bumetanide; Disease Models, Animal; Electric Stimulation; Freund's Adjuvant; GABA Agents; gamma-Aminobutyric Acid; Ganglia, Spinal; Inflammation; Male; Neurons; Phosphinic Acids; Propanolamines; Rats; Rats, Sprague-Dawley; Receptors, GABA-A; Skin; Sodium Potassium Chloride Symporter Inhibitors | 2014 |
Activation of spinal GABAB receptors normalizes N-methyl-D-aspartate receptor in diabetic neuropathy.
N-methyl-D-aspartate receptor (NMDAR) activity is increased, while GABAB receptor is downregulated in the spinal cord dorsal horn in diabetic neuropathy. In this study, we determined the interaction of NMDARs and GABAB receptors in streptozotocin (STZ)-induced diabetic neuropathy. The paw withdrawal threshold (PWT) was significantly lower in STZ-treated rats than in vehicle-treated rats. Intrathecal injection of baclofen, a GABAB receptor agonist, significantly increased the PWT in STZ-treated rats, an effect that was abolished by pre-administration of the GABAB receptor specific antagonist CGP55845. Spinal NR2B, an NMDA receptor subunit, protein and mRNA expression levels were significantly higher in STZ-treated rats than in vehicle-treated rats. Intrathecal baclofen significantly reduced the NR2B protein and mRNA expression levels in STZ-treated rats. Intrathecal administration of CGP55845 eliminated baclofen-induced reduction of NR2B protein and mRNA levels in STZ-treated rats. In addition, the phosphorylated cAMP response element-binding (CREB) protein level was significantly higher in the spinal cord dorsal horn in STZ-treated rats compared with vehicle-treated rats. Intrathecal injection of baclofen significantly decreased phosphorylated CREB protein level in STZ-treated rats; an effect was blocked by CGP55845. These data suggest that activation of GABAB receptors in the spinal cord dorsal horn normalizes NMDAR expression level in diabetic neuropathic pain. Topics: Analysis of Variance; Animals; Antibiotics, Antineoplastic; Baclofen; CREB-Binding Protein; Diabetic Neuropathies; Disease Models, Animal; GABA Antagonists; GABA-B Receptor Agonists; Gene Expression Regulation; Male; Pain Measurement; Phosphinic Acids; Propanolamines; Rats; Rats, Sprague-Dawley; Receptors, GABA-B; Receptors, N-Methyl-D-Aspartate; Spinal Cord; Streptozocin; Time Factors | 2014 |
Proconvulsant action of two GABA(B) receptor antagonists is age-dependent.
Antagonists of GABA(B) receptors are expected to have proconvulsant action also in developing brain. Two antagonists (CGP55845 and CGP46381) were tested in a model of cortical epileptic afterdischarges (ADs) in 12-, 18- and 25-day-old rat pups with implanted electrodes. CGP55845 was dissolved in dimethylsulfoxide and the results demonstrated marked proconvulsant action of this solvent which masked possible action of the antagonist. Water soluble antagonist CGP46381 led to marked potentiation of ADs in 12-day-old animals, its action decreased with age, it was negligible in 25-day-old rats. Our results demonstrated important inhibitory role of GABA(B) receptors at very early stages of maturation. Topics: Action Potentials; Age Factors; Aging; Animals; Cerebral Cortex; Convulsants; Disease Models, Animal; Drug Synergism; Electroencephalography; Epilepsies, Myoclonic; GABA-B Receptor Antagonists; Injections, Intraperitoneal; Male; Phosphinic Acids; Propanolamines; Rats; Rats, Wistar; Receptors, GABA | 2013 |
On the mechanism of anti-hyperthermic effects of LY379268 and LY487379, group II mGlu receptors activators, in the stress-induced hyperthermia in singly housed mice.
Earlier studies have demonstrated that the agonists of the mGlu(2/3) receptors produced anxiolytic actions after peripheral administration. However, the mechanism of their action is still not clear. Therefore the aim of the present study was to specify the role of the GABAergic and serotonergic system in the mechanism of the anxiolytic activity of group II mGlu receptor activators by using the stress induced hyperthermia test (SIH) in singly housed mice. We used an orthosteric mGlu(2/3) receptor agonist, LY379268, which induced anti-hyperthermic efficacy in the doses of 1-5mg/kg (73% of inhibition after a highest dose). The effect of the second ligand used, a mGlu(2) receptor positive modulator (PAM), LY487379, was observed in a dose range of 0.5-5mg/kg and reached 53% of the inhibition. The blockade of GABAergic system by GABA(A) receptor antagonist flumazenil (10mg/kg) or GABA(B) receptor antagonist CGP55845 (10mg/kg), and the blockade of serotonergic system by 5-HT(1A) receptor antagonist WAY100635 (0.1 and 1mg/kg) or 5-HT(2A/2C) receptor antagonist ritanserin (0.5mg/kg) had no influence on the anti-hyperthermic effect induced by effective dose of LY379268. However, the action of the effective dose of LY487379 was enhanced when co-administered with flumazenil, WAY100635 (0.1mg/kg) and ritanserin. Similar results were observed for the subeffective dose of LY379268 (0.5mg/kg). WAY100635 in a dose of 1mg/kg did not induce any enhancing effect on the activity of compounds. Therefore, it seems that the antagonism towards GABA(A) receptors, presynaptic 5-HT(1A) and postsynaptic 5-HT(2A/2C) receptors is responsible for the phenomenon. This article is part of a Special Issue entitled 'Anxiety and Depression'. Topics: Amino Acids; Analysis of Variance; Animals; Bridged Bicyclo Compounds, Heterocyclic; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Interactions; Excitatory Amino Acid Agonists; Fever; Flumazenil; GABA Antagonists; GABA Modulators; Male; Mice; Phosphinic Acids; Piperazines; Propanolamines; Pyridines; Receptors, AMPA; Ritanserin; Serotonin Antagonists; Social Isolation; Stress, Psychological; Sulfonamides | 2012 |
Abnormal presynaptic short-term plasticity and information processing in a mouse model of fragile X syndrome.
Fragile X syndrome (FXS) is the most common inherited form of intellectual disability and the leading genetic cause of autism. It is associated with the lack of fragile X mental retardation protein (FMRP), a regulator of protein synthesis in axons and dendrites. Studies on FXS have extensively focused on the postsynaptic changes underlying dysfunctions in long-term plasticity. In contrast, the presynaptic mechanisms of FXS have garnered relatively little attention and are poorly understood. Activity-dependent presynaptic processes give rise to several forms of short-term plasticity (STP), which is believed to control some of essential neural functions, including information processing, working memory, and decision making. The extent of STP defects and their contributions to the pathophysiology of FXS remain essentially unknown, however. Here we report marked presynaptic abnormalities at excitatory hippocampal synapses in Fmr1 knock-out (KO) mice leading to defects in STP and information processing. Loss of FMRP led to enhanced responses to high-frequency stimulation. Fmr1 KO mice also exhibited abnormal synaptic processing of natural stimulus trains, specifically excessive enhancement during the high-frequency spike discharges associated with hippocampal place fields. Analysis of individual STP components revealed strongly increased augmentation and reduced short-term depression attributable to loss of FMRP. These changes were associated with exaggerated calcium influx in presynaptic neurons during high-frequency stimulation, enhanced synaptic vesicle recycling, and enlarged readily-releasable and reserved vesicle pools. These data suggest that loss of FMRP causes abnormal STP and information processing, which may represent a novel mechanism contributing to cognitive impairments in FXS. Topics: Animals; Animals, Newborn; Calcium; Disease Models, Animal; Electric Stimulation; Excitatory Postsynaptic Potentials; Fragile X Mental Retardation Protein; Fragile X Syndrome; GABA Antagonists; Hippocampus; In Vitro Techniques; Mice; Mice, Knockout; Microscopy, Electron, Transmission; Neural Inhibition; Neuronal Plasticity; Patch-Clamp Techniques; Phosphinic Acids; Piperidines; Potassium Channel Blockers; Presynaptic Terminals; Propanolamines; Sodium Channel Blockers; Synapses; Tetraethylammonium; Tetrodotoxin; Time Factors | 2011 |
Dysfunction of the dentate basket cell circuit in a rat model of temporal lobe epilepsy.
Temporal lobe epilepsy is common and difficult to treat. Reduced inhibition of dentate granule cells may contribute. Basket cells are important inhibitors of granule cells. Excitatory synaptic input to basket cells and unitary IPSCs (uIPSCs) from basket cells to granule cells were evaluated in hippocampal slices from a rat model of temporal lobe epilepsy. Basket cells were identified by electrophysiological and morphological criteria. Excitatory synaptic drive to basket cells, measured by mean charge transfer and frequency of miniature EPSCs, was significantly reduced after pilocarpine-induced status epilepticus and remained low in epileptic rats, despite mossy fiber sprouting. Paired recordings revealed higher failure rates and a trend toward lower amplitude uIPSCs at basket cell-to-granule cell synapses in epileptic rats. Higher failure rates were not attributable to excessive presynaptic inhibition of GABA release by activation of muscarinic acetylcholine or GABA(B) receptors. High-frequency trains of action potentials in basket cells generated uIPSCs in granule cells to evaluate readily releasable pool (RRP) size and resupply rate of recycling vesicles. Recycling rate was similar in control and epileptic rats. However, quantal size at basket cell-to-granule cell synapses was larger and RRP size smaller in epileptic rats. Therefore, in epileptic animals, basket cells receive less excitatory synaptic drive, their pools of readily releasable vesicles are smaller, and transmission failure at basket cell-to-granule cell synapses is increased. These findings suggest dysfunction of the dentate basket cell circuit could contribute to hyperexcitability and seizures. Topics: Analysis of Variance; Animals; Atropine Derivatives; Dentate Gyrus; Disease Models, Animal; Electric Stimulation; Epilepsy, Temporal Lobe; GABA Antagonists; In Vitro Techniques; Lysine; Male; Muscarinic Agonists; Muscarinic Antagonists; Nerve Net; Neurons; Patch-Clamp Techniques; Phosphinic Acids; Pilocarpine; Propanolamines; Rats; Rats, Sprague-Dawley; Synaptic Potentials; Synaptophysin; Time Factors | 2009 |
Blockade of GABA(B) receptors completely reverses age-related learning impairment.
Impaired cognitive functions are well-described in the aging process. GABA(B) antagonists can facilitate learning and memory in young subjects, but these agents have not been well-characterized in aging. Here we show a complete reversal of olfactory discrimination learning deficits in cognitively-impaired aged Fischer 344 rats using the GABA(B) antagonist CGP55845, such that drug treatment restored performance to that on par with young and cognitively-unimpaired aged subjects. There was no evidence that this improved learning was due to enhanced olfactory detection abilities produced by the drug. These results highlight the potential of targeting GABA(B) receptors to ameliorate age-related cognitive deficits and demonstrate the utility of olfactory discrimination learning as a preclinical model for testing novel therapies to improve cognitive functions in aging. Topics: Aging; Animals; Brain; Discrimination Learning; Disease Models, Animal; GABA Antagonists; GABA-B Receptor Antagonists; Learning Disabilities; Male; Memory Disorders; Neural Inhibition; Neuropsychological Tests; Phosphinic Acids; Propanolamines; Rats; Rats, Inbred F344; Receptors, GABA-B; Smell; Synaptic Transmission; Treatment Outcome | 2009 |
Cellular and behavioral interactions of gabapentin with alcohol dependence.
Gabapentin is a structural analog of GABA that has anticonvulsant properties. Despite the therapeutic efficacy of gabapentin, its molecular and cellular mechanisms of action are unclear. The GABAergic system in the central nucleus of the amygdala (CeA) plays an important role in regulating voluntary ethanol intake. Here, we investigated the effect of gabapentin on GABAergic transmission in CeA slices, on ethanol intake, and on an anxiety measure using animal models of ethanol dependence. Gabapentin increased the amplitudes of evoked GABA receptor-mediated IPSCs (GABA-IPSCs) in CeA neurons from nondependent rats, but decreased their amplitudes in CeA of ethanol-dependent rats. Gabapentin effects were blocked in the presence of a specific GABA(B) receptor antagonist. The sensitivity of the GABA-IPSCs to a GABA(B) receptor antagonist and an agonist was decreased after chronic ethanol, suggesting that ethanol-induced neuroadaptations of GABA(B) receptors associated with ethanol dependence may account for the differential effects of gabapentin after chronic ethanol. Systemic gabapentin reduced ethanol intake in dependent, but not in nondependent, rats and reversed the anxiogenic-like effects of ethanol abstinence using an acute dependence model. Gabapentin infused directly into the CeA also blocked dependence-induced elevation in operant ethanol responding. Collectively, these findings show that gabapentin reverses behavioral measures of ethanol dependence and, in turn, dependence reverses the effects of gabapentin on CeA neurons, and suggest that gabapentin represents a potential medication for treatment of alcoholism. Topics: Alcoholism; Amines; Amygdala; Animals; Behavior, Animal; Central Nervous System Depressants; Cyclohexanecarboxylic Acids; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Administration Schedule; Ethanol; Excitatory Amino Acid Antagonists; GABA Antagonists; Gabapentin; gamma-Aminobutyric Acid; In Vitro Techniques; Inhibitory Postsynaptic Potentials; Male; Maze Learning; Neurons; Patch-Clamp Techniques; Phosphinic Acids; Propanolamines; Rats; Rats, Wistar; Self Administration; Synaptic Transmission | 2008 |
Plasticity of pre- and postsynaptic GABAB receptor function in the paraventricular nucleus in spontaneously hypertensive rats.
GABA(B) receptor function is upregulated in the paraventricular nucleus (PVN) of the hypothalamus in spontaneously hypertensive rats (SHR), but it is unclear whether this upregulation occurs pre- or postsynaptically. We therefore determined pre- and postsynaptic GABA(B) receptor function in retrogradely labeled spinally projecting PVN neurons using whole cell patch-clamp recording in brain slices in SHR and Wistar-Kyoto (WKY) rats. Bath application of the GABA(B) receptor agonist baclofen significantly decreased the spontaneous firing activity of labeled PVN neurons in both SHR and WKY rats. However, the magnitude of reduction in the firing rate was significantly greater in SHR than in WKY rats. Furthermore, baclofen produced larger membrane hyperpolarization and outward currents in labeled PVN neurons in SHR than in WKY rats. The baclofen-induced current was abolished by either including G protein inhibitor GDPbetaS in the pipette solution or bath application of the GABA(B) receptor antagonist in both SHR and WKY rats. Blocking N-methyl-d-aspartic acid receptors had no significant effect on baclofen-elicited outward currents in SHR. In addition, baclofen caused significantly greater inhibition of glutamatergic excitatory postsynaptic currents (EPSCs) in labeled PVN neurons in brain slices from SHR than WKY rats. By contrast, baclofen produced significantly less inhibition of GABAergic inhibitory postsynaptic currents (IPSCs) in labeled PVN neurons in SHR than in WKY rats. Although microinjection of the GABA(B) antagonist into the PVN increases sympathetic vasomotor tone in SHR, the GABA(B) antagonist did not affect EPSCs and IPSCs of the PVN neurons in vitro. These findings suggest that postsynaptic GABA(B) receptor function is upregulated in PVN presympathetic neurons in SHR. Whereas presynaptic GABA(B) receptor control of glutamatergic synaptic inputs is enhanced, presynaptic GABA(B) receptor control of GABAergic inputs in the PVN is attenuated in SHR. Changes in both pre- and postsynaptic GABA(B) receptors in the PVN may contribute to the control of sympathetic outflow in hypertension. Topics: Animals; Baclofen; Disease Models, Animal; Dose-Response Relationship, Drug; Excitatory Postsynaptic Potentials; GABA Agonists; GABA Antagonists; Glutamine; GTP-Binding Proteins; Guanosine Diphosphate; Hypertension; In Vitro Techniques; Inhibitory Postsynaptic Potentials; Male; Neuronal Plasticity; Paraventricular Hypothalamic Nucleus; Patch-Clamp Techniques; Phosphinic Acids; Presynaptic Terminals; Propanolamines; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Receptors, GABA-B; Staining and Labeling; Sympathetic Nervous System; Synaptic Transmission; Thionucleotides | 2008 |
Contribution of GABA(A) and GABA(B) receptors to thalamic neuronal activity during spontaneous absence seizures in rats.
The contribution of GABAergic mechanisms in thalamic relay nuclei to spike and wave discharges (SWDs) during spontaneous seizures was assessed using the WAG/Rij strain of rats, an established genetic model of absence epilepsy, in combination with single-unit recordings and microiontophoretic techniques in the ventrobasal thalamic complex in vivo. Spontaneous SWDs occurring on the electroencephalogram at 5-9 Hz were associated with burst firing in thalamocortical neurons, which was phase-locked with the spike component. Microiontophoretic application of the GABA(A) receptor antagonist bicuculline significantly increased the magnitude of SWD-related firing in all tested cells. Application of the GABA(B) receptor antagonist CGP 55845A exerted a statistically insignificant modulatory effect on neuronal activity during spontaneous SWDs but significantly attenuated the bicuculline-evoked aggravation of SWD-related firing. The data indicate that, in thalamocortical neurons, (1) GABA(A) receptor-mediated events are recruited with each SWD, (2) SWD-related activity can be evoked with no significant contribution of GABA(B) receptors, and (3) blockade of GABA(A) receptors potentiates SWD-related activity, presumably through an indirect effect mediated through GABA(B) receptors. These results vote against a predominant or even exclusive contribution of GABA(B) receptors to spontaneous SWDs in thalamic relay nuclei in the WAG/Rij strain, but rather point to a critical role of GABA(A) receptor activation. This conclusion is in support of the view that the two subtypes of GABA receptors play a differential role in fast (5-10 Hz) and slow (3 Hz) spike-wave paroxysms observed during absence seizures. Topics: Action Potentials; Animals; Bicuculline; Disease Models, Animal; Electroencephalography; Epilepsy, Absence; GABA Agonists; GABA Antagonists; GABA-A Receptor Agonists; GABA-A Receptor Antagonists; GABA-B Receptor Agonists; GABA-B Receptor Antagonists; gamma-Aminobutyric Acid; Iontophoresis; Linear Models; Male; Neurons; Phosphinic Acids; Propanolamines; Rats; Rats, Inbred Strains; Receptors, GABA-A; Receptors, GABA-B; Thalamus | 2001 |
Aberrant neuronal physiology in the basal nucleus of the amygdala in a model of chronic limbic epilepsy.
Limbic epilepsy is a chronic condition associated with a broad zone of seizure onset and pathology. Studies have focused mainly on the hippocampus, but there are indications that changes occur in other regions of the limbic system. This study used in vitro intracellular recording and histology to examine alterations to the physiology and anatomy of the basal nucleus of the amygdala in a rat model of chronic limbic epilepsy characterized by spontaneously recurring seizures. Epileptic pyramidal neuron responses evoked by stria terminalis stimulation revealed hyperexcitability characterized by multiple action potential bursts and no evident inhibitory potentials. In contrast, no hyperexcitability was observed in amygdalar neurons from kindled (included as a control for seizure activity) or control rats. Blockade of ionotropic glutamate receptors unmasked inhibitory postsynaptic potentials in epileptic pyramidal neurons. Control, kindled and epileptic inhibitory potentials were predominantly biphasic, with fast and slow components, but a few cells exhibited only the fast component (2/12 in controls, 0/3 in kindled, 3/10 in epileptic). Epileptic fast inhibitory potentials had a more rapid onset and shorter duration than control and kindled. Approximately 40% of control neurons exhibited spontaneous inhibitory potentials; no spontaneous inhibitory potentials were observed in neurons from kindled or epileptic rats. A preliminary histological examination revealed no gross alterations in the basal amygdala from epileptic animals. These results extend previous findings from this laboratory that hyperexcitability is found in multiple epileptic limbic regions and may be secondary to multiple alterations in excitatory and inhibitory efficacy. Because there were no differences between control and kindled animals, the changes observed in the epileptic animals are unlikely to be secondary to recurrent seizures. Topics: Action Potentials; Amygdala; Animals; Disease Models, Animal; Electric Stimulation; Epilepsy; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; GABA Antagonists; Kindling, Neurologic; Neural Pathways; Neurons; Phosphinic Acids; Propanolamines; Quinoxalines; Rats; Valine | 2000 |
Shortened-duration GABA(A) receptor-mediated synaptic potentials underlie enhanced CA1 excitability in a chronic model of temporal lobe epilepsy.
Intracellular recording techniques were used to examine GABA(A) receptor-mediated synaptic inhibition in pyramidal cells of the CA1 region of the rat hippocampus in the post-self sustaining limbic status epilepticus model of temporal lobe epilepsy. Orthodromically evoked, monosynaptic inhibitory postsynaptic potentials were recorded in vitro following pharmacological blockade of ionotropic glutamate and GABA(B) receptors. Inhibitory postsynaptic potentials from epileptic tissue were kinetically altered relative to controls; both the 10-90% rise-time and width (measured at half-maximum amplitude) were reduced by approximately 50% resulting in significant shortening of duration. The degree of pyramidal cell hyperexcitability, assessed before pharmacological treatment as the number of action potentials evoked by maximum intensity afferent stimulation, correlated significantly with the magnitude of synaptic potential duration reduction determined following blockade of glutamatergic neurotransmission. Bath application of the benzodiazepine type 1 receptor agonist zolpidem reduced post-self sustaining limbic status epilepticus CA1 pyramidal cell hyperexcitability substantially (but not completely) via a marked increase in inhibitory postsynaptic potential area. Post-self-sustaining limbic status epilepticus inhibitory postsynaptic potentials which exhibited the most pronounced shortening were augmented by zolpidem to a greater degree than longer duration synaptic potentials. In contrast, zolpidem-induced augmentation of control inhibitor, postsynaptic potential area was much less robust. It is suggested that a deficiency in post-self-sustaining limbic status epilepticus GABA(A) receptor-mediated synaptic inhibition contributes to a state of partial disinhibition which is a major factor in enhanced CA1 excitability in chronic limbic epilepsy. Possible mechanisms underlying post-self-sustaining limbic status epilepticus kinetic abnormalities are discussed. Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Action Potentials; Animals; Disease Models, Animal; Electric Stimulation; Epilepsy, Temporal Lobe; Evoked Potentials; GABA Antagonists; GABA-A Receptor Antagonists; GABA-B Receptor Antagonists; Hippocampus; Hypnotics and Sedatives; Male; Phosphinic Acids; Propanolamines; Pyramidal Cells; Pyridines; Rats; Rats, Sprague-Dawley; Receptors, GABA-A; Receptors, GABA-B; Regression Analysis; Synapses; Zolpidem | 1997 |