ceruletide has been researched along with Precancerous-Conditions* in 7 studies
7 other study(ies) available for ceruletide and Precancerous-Conditions
Article | Year |
---|---|
Genetic and pharmacologic abrogation of Snail1 inhibits acinar-to-ductal metaplasia in precursor lesions of pancreatic ductal adenocarcinoma and pancreatic injury.
Topics: Animals; Antineoplastic Agents; Carcinoma, Pancreatic Ductal; Cell Transformation, Neoplastic; Ceruletide; Disease Models, Animal; Disease Progression; Gene Knockdown Techniques; Heterografts; Humans; Metaplasia; Mice; Mice, Inbred C57BL; Mice, Nude; Mice, Transgenic; Naphthoquinones; Pancreas; Pancreatic Neoplasms; Precancerous Conditions; Snail Family Transcription Factors; Tumor Cells, Cultured | 2018 |
Ablation of sensory neurons in a genetic model of pancreatic ductal adenocarcinoma slows initiation and progression of cancer.
Pancreatic ductal adenocarcinoma (PDAC) is characterized by an exuberant inflammatory desmoplastic response. The PDAC microenvironment is complex, containing both pro- and antitumorigenic elements, and remains to be fully characterized. Here, we show that sensory neurons, an under-studied cohort of the pancreas tumor stroma, play a significant role in the initiation and progression of the early stages of PDAC. Using a well-established autochthonous model of PDAC (PKC), we show that inflammation and neuronal damage in the peripheral and central nervous system (CNS) occurs as early as the pancreatic intraepithelial neoplasia (PanIN) 2 stage. Also at the PanIN2 stage, pancreas acinar-derived cells frequently invade along sensory neurons into the spinal cord and migrate caudally to the lower thoracic and upper lumbar regions. Sensory neuron ablation by neonatal capsaicin injection prevented perineural invasion (PNI), astrocyte activation, and neuronal damage, suggesting that sensory neurons convey inflammatory signals from Kras-induced pancreatic neoplasia to the CNS. Neuron ablation in PKC mice also significantly delayed PanIN formation and ultimately prolonged survival compared with vehicle-treated controls (median survival, 7.8 vs. 4.5 mo; P = 0.001). These data establish a reciprocal signaling loop between the pancreas and nervous system, including the CNS, that supports inflammation associated with oncogenic Kras-induced neoplasia. Thus, pancreatic sensory neurons comprise an important stromal cell population that supports the initiation and progression of PDAC and may represent a potential target for prevention in high-risk populations. Topics: Adenocarcinoma in Situ; Afferent Pathways; Animals; Animals, Newborn; Capsaicin; Carcinoma, Pancreatic Ductal; Ceruletide; Denervation; Disease Progression; Female; Ganglia, Sympathetic; Genes, ras; Humans; Male; Mice; Mice, Inbred C57BL; Mice, Transgenic; Myelitis; Neoplasm Invasiveness; Pancreas; Pancreatic Neoplasms; Pancreatitis; Precancerous Conditions; Sensory Receptor Cells; Spinal Cord; Spinothalamic Tracts; Thoracic Vertebrae | 2016 |
Caerulein-induced pancreatitis augments the expression and phosphorylation of collapsin response mediator protein 4.
Chronic pancreatitis is a significant risk factor for pancreatic cancer. Previously, we demonstrated that the pancreatic cancer cells show enhanced expression of collapsin response mediator protein 4 (CRMP4) that strongly correlates with severe venous invasion, liver metastasis, and poor prognosis. However, involvement of CRMP4 in acute or chronic pancreatitis remains unknown.. Acute and chronic pancreatitis mice models were developed by periodic injection of caerulein. The expression levels of CRMP4 and its phosphorylation were examined.. Elevated CRMP4 levels were observed in the infiltrated lymphocytes as well as in the pancreas parenchyma of both acute and chronic pancreatitis. The expression pattern of phosphorylated CRMP4 was similar to that of CRMP4. Cdk5 partially co-localized with the phosphorylated CRMP4.. Pancreatitis induces CRMP4 expression in the pancreas parenchyma and in the infiltrated lymphocytes. Overlapping expression of CRMP4 and Cdk5 may suggest that the Cdk5 is at least, in part, responsible for the phosphorylation of CRMP4. The results suggest that CRMP4 is involved in the inflammatory response in pancreatitis. Understanding the mechanisms of CRMP4 would help us to develop novel therapeutic strategies against acute or chronic pancreatitis, and pancreatic cancer. Topics: Acute Disease; Animals; Biopsy, Needle; Cell Transformation, Neoplastic; Ceruletide; Chronic Disease; Cyclin-Dependent Kinase 5; Disease Models, Animal; Gene Expression Regulation; Humans; Immunohistochemistry; Mice; Nerve Tissue Proteins; Pancreatic Neoplasms; Pancreatitis; Phosphorylation; Precancerous Conditions; RNA, Small Interfering | 2016 |
NFATc1 Links EGFR Signaling to Induction of Sox9 Transcription and Acinar-Ductal Transdifferentiation in the Pancreas.
Oncogenic mutations in KRAS contribute to the development of pancreatic ductal adenocarcinoma, but are not sufficient to initiate carcinogenesis. Secondary events, such as inflammation-induced signaling via the epidermal growth factor receptor (EGFR) and expression of the SOX9 gene, are required for tumor formation. Herein we sought to identify the mechanisms that link EGFR signaling with activation of SOX9 during acinar-ductal metaplasia, a transdifferentiation process that precedes pancreatic carcinogenesis.. We analyzed pancreatic tissues from Kras(G12D);pdx1-Cre and Kras(G12D);NFATc1(Δ/Δ);pdx1-Cre mice after intraperitoneal administration of caerulein, vs cyclosporin A or dimethyl sulfoxide (controls). Induction of EGFR signaling and its effects on the expression of Nuclear factor of activated T cells c1 (NFATc1) or SOX9 were investigated by quantitative reverse-transcription polymerase chain reaction, immunoblot, and immunohistochemical analyses of mouse and human tissues and acinar cell explants. Interactions between NFATc1 and partner proteins and effects on DNA binding or chromatin modifications were studied using co-immunoprecipitation and chromatin immunoprecipitation assays in acinar cell explants and mouse tissue.. EGFR activation induced expression of NFATc1 in metaplastic areas from patients with chronic pancreatitis and in pancreatic tissue from Kras(G12D) mice. EGFR signaling also promoted formation of a complex between NFATc1 and C-JUN in dedifferentiating mouse acinar cells, leading to activation of Sox9 transcription and induction of acinar-ductal metaplasia. Pharmacologic inhibition of NFATc1 or disruption of the Nfatc1 gene inhibited EGFR-mediated induction of Sox9 transcription and blocked acinar-ductal transdifferentiation and pancreatic cancer initiation in mice.. EGFR signaling induces expression of NFATc1 and Sox9, leading to acinar cell transdifferentiation and initiation of pancreatic cancer. Strategies designed to disrupt this pathway might be developed to prevent pancreatic cancer initiation in high-risk patients with chronic pancreatitis. Topics: Animals; Carcinoma, Pancreatic Ductal; Cell Line; Cell Transdifferentiation; Cell Transformation, Neoplastic; Ceruletide; Cyclosporine; Disease Models, Animal; ErbB Receptors; Gene Expression Regulation; Humans; Male; Metaplasia; Mice, Inbred C57BL; Mice, Knockout; Mutation; NFATC Transcription Factors; Pancreas, Exocrine; Pancreatic Ducts; Pancreatic Neoplasms; Pancreatitis; Precancerous Conditions; Proto-Oncogene Proteins p21(ras); Signal Transduction; SOX9 Transcription Factor; Tissue Culture Techniques; Transcriptional Activation | 2015 |
An NF-κB pathway-mediated positive feedback loop amplifies Ras activity to pathological levels in mice.
Genetic mutations that give rise to active mutant forms of Ras are oncogenic and found in several types of tumor. However, such mutations are not clear biomarkers for disease, since they are frequently detected in healthy individuals. Instead, it has become clear that elevated levels of Ras activity are critical for Ras-induced tumorigenesis. However, the mechanisms underlying the production of pathological levels of Ras activity are unclear. Here, we show that in the presence of oncogenic Ras, inflammatory stimuli initiate a positive feedback loop involving NF-κB that further amplifies Ras activity to pathological levels. Stimulation of Ras signaling by typical inflammatory stimuli was transient and had no long-term sequelae in wild-type mice. In contrast, these stimuli generated prolonged Ras signaling and led to chronic inflammation and precancerous pancreatic lesions (PanINs) in mice expressing physiological levels of oncogenic K-Ras. These effects of inflammatory stimuli were disrupted by deletion of inhibitor of NF-κB kinase 2 (IKK2) or inhibition of Cox-2. Likewise, expression of active IKK2 or Cox-2 or treatment with LPS generated chronic inflammation and PanINs only in mice expressing oncogenic K-Ras. The data support the hypothesis that in the presence of oncogenic Ras, inflammatory stimuli trigger an NF-κB-mediated positive feedback mechanism involving Cox-2 that amplifies Ras activity to pathological levels. Because a large proportion of the adult human population possesses Ras mutations in tissues including colon, pancreas, and lung, disruption of this positive feedback loop may be an important strategy for cancer prevention. Topics: Animals; Carcinoma, Pancreatic Ductal; Cell Transformation, Neoplastic; Ceruletide; Cyclooxygenase 2; Cyclooxygenase 2 Inhibitors; Enzyme Induction; Esters; Feedback, Physiological; Gabexate; Gene Expression Regulation, Neoplastic; Gene Knock-In Techniques; Genes, ras; Guanidines; Humans; I-kappa B Kinase; Inflammation; Inflammation Mediators; Lipopolysaccharides; Mice; Mice, Transgenic; Neoplasm Proteins; NF-kappa B; Pancreas; Pancreatic Neoplasms; Pancreatitis, Chronic; Precancerous Conditions; Proto-Oncogene Proteins p21(ras); Sincalide | 2012 |
Acute pancreatitis accelerates initiation and progression to pancreatic cancer in mice expressing oncogenic Kras in the nestin cell lineage.
Targeting of oncogenic Kras to the pancreatic Nestin-expressing embryonic progenitor cells and subsequently to the adult acinar compartment and Nestin-expressing cells is sufficient for the development of low grade pancreatic intraepithelial neoplasia (PanIN) between 2 and 4 months. The mice die around 6 month-old of unrelated causes, and it is therefore not possible to assess whether the lesions will progress to carcinoma. We now report that two brief episodes of caerulein-induced acute pancreatitis in 2 month-old mice causes rapid PanIN progression and pancreatic ductal adenocarcinoma (PDAC) development by 4 months of age. These events occur with similar frequency as observed in animals where the oncogene is targeted during embryogenesis to all pancreatic cell types. Thus, these data show that oncogenic Kras-driven PanIN originating in a non-ductal compartment can rapidly progress to PDAC when subjected to a brief inflammatory insult. Topics: Animals; Carcinoma in Situ; Carcinoma, Pancreatic Ductal; Cell Lineage; Ceruletide; Disease Progression; Gene Targeting; Humans; Integrases; Intermediate Filament Proteins; Mice; Mice, Transgenic; Nerve Tissue Proteins; Nestin; Pancreatic Ducts; Pancreatic Neoplasms; Pancreatitis; Precancerous Conditions; Proto-Oncogene Proteins p21(ras); STAT3 Transcription Factor; Stem Cells; Transgenes | 2011 |
Pancreatic duct glands are distinct ductal compartments that react to chronic injury and mediate Shh-induced metaplasia.
Pancreatic intraepithelial neoplasia (PanIN) are pancreatic cancer precursor lesions of unclear origin and significance. PanIN aberrantly express sonic hedgehog (Shh), an initiator of pancreatic cancer, and gastrointestinal mucins. A majority of PanIN are thought to arise from ducts. We identified a novel ductal compartment that is gathered in gland-like outpouches (pancreatic duct glands [PDG]) of major ducts and characterized its role in injury and metaplasia.. The ductal system was analyzed in normal pancreata and chronic pancreatitis in humans and mice. Anatomy was assessed by serial hematoxylin and eosin sections and scanning electron microscopy of corrosion casts. Expression of mucins and developmental genes and proliferation were assessed by immunohistochemistry or real-time quantitative polymerase chain reaction. Effects of Shh on ductal cells were investigated by exposure to Shh in vitro and transgenic misexpression in vivo.. Three-dimensional analysis revealed blind-ending outpouches of ducts in murine and human pancreata. These PDG are morphologically and molecularly distinct from normal ducts; even in normal pancreata they display PanIN and metaplastic features, such as expression of Shh and gastric mucins. They express other developmental genes, such as Pdx-1 and Hes-1. In injury, Shh is up-regulated along with gastric mucins. Expansion of the PDG compartment results in a mucinous metaplasia. Shh promotes this transformation in vitro and in vivo.. PDG are distinct gland-like mucinous compartments with a distinct molecular signature. In response to injury, PDG undergo an Shh-mediated mucinous gastrointestinal metaplasia with PanIN-like features. PDG may provide a link between Shh, mucinous metaplasia, and neoplasia. Topics: Animals; Carcinoma in Situ; Cells, Cultured; Ceruletide; Corrosion Casting; Disease Models, Animal; Epithelial Cells; Gastric Mucins; Gene Expression Regulation, Developmental; Hedgehog Proteins; Humans; Immunohistochemistry; Metaplasia; Mice; Mice, Transgenic; Pancreatic Ducts; Pancreatic Neoplasms; Pancreatitis, Chronic; Precancerous Conditions; Reverse Transcriptase Polymerase Chain Reaction; Signal Transduction; Time Factors | 2010 |