ceruletide and Pneumonia

ceruletide has been researched along with Pneumonia* in 2 studies

Other Studies

2 other study(ies) available for ceruletide and Pneumonia

ArticleYear
Caerulein-induced acute pancreatitis results in mild lung inflammation and altered respiratory mechanics.
    Experimental lung research, 2011, Volume: 37, Issue:2

    Acute lung injury is a common complication of acute pancreatitis (AP) and contributes to the majority of AP-associated deaths. Although some aspects of AP-induced lung inflammation have been demonstrated, investigation of resultant changes in lung function is limited. The aim of this study was to characterize lung injury in caerulein-induced AP. Male Sprague Dawley rats (n = 7-8/group) received 7 injections of caerulein (50 μg/kg) at 12, 24, 48, 72, 96, or 120 hours before measurement of lung impedance mechanics. Bronchoalveolar lavage (BAL), plasma, pancreatic, and lung tissue were collected to determine pancreatic and lung measures of acute inflammation. AP developed between 12 and 24 hours, as indicated by increased plasma amylase activity and pancreatic myeloperoxidase (MPO) activity, edema, and abnormal acinar cells, before beginning to resolve by 48 hours. In the lung, MPO activity peaked at 12 and 96 hours, with BAL cytokine concentrations peaking at 12 hours, followed by lung edema at 24 hours, and BAL cell count at 48 hours. Importantly, no significant changes in BAL protein concentration or arterial blood gas-pH levels were evident over the same period, and only modest changes were observed in respiratory mechanics. Caerulein-induced AP results in minor lung injury, which is not sufficient to allow protein permeability and substantially alter respiratory mechanics.

    Topics: Acute Lung Injury; Amylases; Animals; Bronchoalveolar Lavage; Ceruletide; Male; Pancreatitis; Peroxidase; Pneumonia; Pulmonary Edema; Rats; Rats, Sprague-Dawley; Respiratory Mechanics

2011
TLR9 and the NLRP3 inflammasome link acinar cell death with inflammation in acute pancreatitis.
    Gastroenterology, 2011, Volume: 141, Issue:1

    Acute pancreatitis is characterized by early activation of intracellular proteases followed by acinar cell death and inflammation. Activation of damage-associated molecular pattern (DAMP) receptors and a cytosolic complex termed the inflammasome initiate forms of inflammation. In this study, we examined whether DAMP-receptors and the inflammasome provide the link between cell death and the initiation of inflammation in pancreatitis.. Acute pancreatitis was induced by caerulein stimulation in wild-type mice and mice deficient in components of the inflammasome (apoptosis-associated speck-like protein containing a caspase recruitment domain [ASC], NLRP3, caspase-1), Toll-like receptor 9 (TLR9), or the purinergic receptor P2X(7). Resident and infiltrating immune cell populations and pro-interleukin-1β expression were characterized in control and caerulein-treated adult murine pancreas. TLR9 expression was quantified in pancreatic cell populations. Additionally, wild-type mice were pretreated with a TLR9 antagonist before induction of acute pancreatitis by caerulein or retrograde bile duct infusion of taurolithocholic acid 3-sulfate.. Caspase-1, ASC, and NLRP3 were required for inflammation in acute pancreatitis. Genetic deletion of Tlr9 reduced pancreatic edema, inflammation, and pro-IL-1β expression in pancreatitis. TLR9 was expressed in resident immune cells of the pancreas, which are predominantly macrophages. Pretreatment with the TLR9 antagonist IRS954 reduced pancreatic edema, inflammatory infiltrate, and apoptosis. Pretreatment with IRS954 reduced pancreatic necrosis and lung inflammation in taurolithocholic acid 3-sulfate-induced acute pancreatitis.. Components of the inflammasome, ASC, caspase-1, and NLRP3, are required for the development of inflammation in acute pancreatitis. TLR9 and P2X(7) are important DAMP receptors upstream of inflammasome activation, and their antagonism could provide a new therapeutic strategy for treating acute pancreatitis.

    Topics: Acute Disease; Animals; Anti-Inflammatory Agents; Apoptosis; Apoptosis Regulatory Proteins; CARD Signaling Adaptor Proteins; Carrier Proteins; Caspase 1; Ceruletide; Cytoskeletal Proteins; Disease Models, Animal; DNA; Inflammasomes; Interleukin-1; Macrophages; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Necrosis; Neutrophil Infiltration; NLR Family, Pyrin Domain-Containing 3 Protein; Pancreas; Pancreatitis; Pneumonia; Protein Precursors; Purinergic P2X Receptor Antagonists; Receptors, Purinergic P2X7; RNA, Messenger; Severity of Illness Index; Signal Transduction; Taurolithocholic Acid; Toll-Like Receptor 9

2011